
  

      

 

 

 Minerals on the edge: sediment-hosted base  metal  
endowment above  steps in lithospheric thickness  
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To meet the rising global demand for base metals – driven primarily by the transition to cleaner-energy sources – 
declining rates of discovery of new deposits need to be countered by advances in exploration undercover. Here, we 

report that 85% of the world’s sediment-hosted base metals, including all giant deposits (>10 Mt of metal), occur 

within 200 km of the edge of thick lithosphere, irrespective of the age of mineralisation. This implies long-term craton 

edge stability, forcing a reconsideration of basin dynamics and the sediment-hosted mineral system. We find that the 

thermochemical structure of thick lithosphere results in increased basin subsidence rates during rifting, coupled with 

low geothermal gradients, which ensure favourable metal solubility and precipitation. Sediments in such basins 

generally contain all necessary lithofacies of the mineral system. These considerations allow establishment of the 

first-ever national prospectus for sediment-hosted base metal discovery. Conservative estimates place the 

undiscovered resource of sediment-hosted base metals in Australia to be ~50–200 Mt of metal. Importantly, this 

work suggests that ~15% of Australia is prospective for giant sediment-hosted deposits; we suggest that exploration 

efforts should be focused in this area. 

The global transition to a cleaner-energy economy is driving 

demand for base metals (Cu, Pb, Zn and Ni), but significant 
shortfalls are forecast over the coming decades as discovery 
rates for new deposits decline (Ali et al., 2017; Schodde, 

2017). Australia is not immune, despite hosting many high-
quality sediment-hosted Cu, Pb and Zn deposits with 
companion critical minerals (Mudd et al., 2019). A consensus 

is emerging that the mineral exploration frontier now lies 
beneath post-mineralisation cover. 

The undercover search space is vast (~80% of Australia) 

and drastically undersampled. Undercover exploration needs 
to focus on provinces with the greatest potential for new giant 
discoveries. The most common approach is to develop a 

conceptual genetic model of a deposit type largely based on 
ore deposit studies, and then interrogate spatial databases 
for key proxies (Hronsky and Groves, 2008). The genesis of 

sediment-hosted deposits requires oxidised, moderate-
temperature (80–250 °C) and moderate- to high-salinity fluids 
(10–30 wt. % NaCl) that are sourced from evaporites. These 

brines scavenge metals as they flow through voluminous 
oxidised terrestrial sediments intercalated with magmatic 
rocks, before they are focused along faults into oxidation– 
reduction depositional interfaces such as black shales 
(Figure  1; Hitzman  et  al.,  2010;  Leach  et  al.,  2010).  The  
necessary  lithologies  for  this  mineral  system  can  be  locally  

identified  in  surface  geological  maps,  but  have  so  far  been  

difficult  to  identify  undercover,  as  systematic  subsurface  
geological  maps  are  in  their  infancy  (Stewart  et  al.,  2020).  An  

alternative  approach  is  to  identify  fertile  basins  at  the  regional  
scale  by  screening  stacked  geological  provinces  for  the  
presence  or  absence  of  these  key  lithologies  using  the  

Australian  Stratigraphic  Units  Database  (ASUD;  Stewart  et  
al.,  2013).  These  mineral  system ingredients  are  common  in  
many  failed  rifts  and  passive  margins,  so  this  approach  only  

reduces  the  search  space  in  Australia  to  ~60%.   
Further reductions in exploration area at the national 

scale require extensive, homogenous datasets that have 

mineral system implications (Hronsky and Groves, 2008). 

Figure 1 Schematic rift-related lithospheric architecture and four key 
sediment-hosted base metal mineral system components: (E)vaporitic 
source of basinal brines that scavenge metals from (O)xidised terrestrial 
sediments and (I)gneous mafic rocks on route to (R)eduction interfaces, 
such as black shales, where metals are deposited. Notice variable vertical 
exaggeration (VE) and prominence of the lithosphere–asthenosphere 
boundary (LAB) at 1:1 scale. Schematic based on deep reflection seismic 
profiles across the North Australian Zinc Belt and modelling by Manning 
and Emsbo (2018). Lithological proxies for the four components are E: 

Evaporite, Halite, Gypsum, Barite, Scapolite, Cauliflower chert, Sabkha, 
Stromatolite, Hopper crystals, Oncolite and Anhydrite; O: Dolostone, 
Dolomite, Dolo, Limestone and Arkose; I: Basalt, Mafic, Tholeiitic, Dolerite, 
Gabbro, Greenstone, Basic; R: <2 Ga, Black Shale, Carbonaceous. 

Among others, seismic tomography techniques are ideal for 
providing this coverage, as seismic waves sample regions 

located between sparse seismometer stations (Gorbatov et 
al., 2020). For almost a decade, seismic tomography has 
been used to map first-order lithospheric mantle controls on 

magmatic ore deposits (Griffin et al., 2013). In contrast, deep 
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Figure 2: Global distribution of sediment-hosted base metal deposits as a function of lithospheric thickness. LAB derived from SL2013sv tomography model 
using a calibrated anelasticity parameterisation (Schaeffer and Lebedev, 2013; Yamauchi and Takei, 2016; Richards et al., in press). Symbols show deposit 
locations, coloured by deposit age (Ga = billion years) and proportional in size to total contained mass of metal (Mt = megatonnes); unknown deposit size is 
given a 2 Mt symbol; unknown deposit age is plotted in grey; circles are clastic dominated lead-zinc (PbZn-CD); triangles are Mississippi Valley–type lead-
zinc (PbZn-MVT); squares are sedimentary copper (Cu-sed). 

controls on sediment-hosted mineral systems have been 

largely overlooked, even though the influence of lithospheric 
structure on basin genesis is well established (McKenzie, 
1978). As part of the Exploring for the Future program, 

Hoggard et al. (in press) discovered that all giant sediment-
hosted mineral deposits (>10 Mt metal) are located above 
steps in the most fundamental upper mantle structure – the 

lithosphere–asthenosphere boundary (LAB). Here, we review 
this finding and the implications for mineral potential in 
undercover regions of Australia. 

Lithospheric  control  on mineralisation  
Given the sporadic distribution of giant mineral deposits, 
robust linking of geological features to deposit locations is 
best achieved through a global study. To this end, we 

compiled a global inventory of six major base metal deposit 
types from published sources. Three are associated with 
magmatic process, and three are sediment hosted: 

sedimentary copper (Cu-sed), clastic-dominated lead-zinc 
(PbZn-CD, or sedimentary exhalative) and Mississippi 
Valley–type lead-zinc (PbZn-MVT). Next, we used a method 

developed by Priestley and McKenzie (2013) of mapping the 
thermal LAB from seismic tomography, refined by Richards et 
al. (in press). This method takes into consideration recent 

laboratory experiments on the effect of anelasticity on shear-
wave velocities (Yamauchi and Takei, 2016). We calculated a 
global LAB using the SL2013sv tomography model, 

calibrated to the latest thermal structure of cooling oceanic 
lithosphere (Schaeffer and Lebedev, 2013; Richards et al., 
2018). We also calculated a higher-resolution Australian LAB 

using the FR12 tomography model (Fishwick and Rawlinson, 
2012), calibrated using nine local paleogeotherms derived 
from thermobarometry of mantle xenoliths and xenocrysts. 

The  global  LAB  reveals  a  striking  relationship  between  

major  sediment-hosted  mineral  deposits  and  the  edge  of  thick  
lithosphere,  outlined  by  the  170  km depth  contour  (Figure  2).  
This  relationship  is  even  clearer  in  the  higher-resolution  

model  of  Australia,  with  iron-oxide-copper-gold  (IOCG)  
deposits  also  lying  along  the  same  trend,  including  Olympic  
Dam (Figure  3a).  Unfortunately,  ongoing  uncertainty  in  

classification  schemes  of  IOCG  deposits  has  hindered  our  
attempt  to  perform  a  global  assessment  of  these  systems.  

To  quantify  the  relationship,  we  calculated  the  distance  

between  each  sediment-hosted  deposit  and  the  170  km LAB  
depth  contour,  and  plotted  the  cumulative  distribution  
function,  weighting  by  the  mass  of  metal  within  each  deposit  

(Figure  3b).  Globally,  we  find  that  ~90% of  Cu-sed,  ~90% of  
PbZn-CD  and  ~70% of  PbZn-MVT  resources  are  located  
within  200  km of  the  170  km LAB  depth  contour  (Figure  3b).  

This  corridor  corresponds  to  only  one-third  of  continental  
surface  area  and  encapsulates  all  giant  sediment-hosted  
deposits.  Since  the  width  of  this  zone  is  similar  to  the  

~280  km  horizontal  node  spacing  in  SL2013sv,  tighter  
constraints  are  only  possible  with  higher-resolution  
tomography  models.  Indeed,  all  giant  sediment-hosted  and  

IOCG d eposits  in  our  higher-resolution  model  of  Australia  are  
located  within  100  km of  the  170  km LAB  depth  contour,  
illustrating  the  great  benefit  of  increasing  the  passive  seismic  

coverage  of  Australia  (Figure  3a).  This  criterion  alone  
reduces  the  exploration  corridor  in  Australia  to  less  than  one-
quarter  of  the  continent  (Figure  3c).  We  tested  the  

significance  of  the  relationship  using  the  two-sample  
Kolmogorov–Smirnov  test,  which  estimates  that  the  
probability  of  global  sediment-hosted  deposits  representing  

random continental  locations  is  less  than  1  in  1012  
(Kolmogorov,  1933).  Surprisingly,  deposit  types  associated  
with  magmatism  do  not  follow  this  simple  trend.  Volcanogenic   
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Figure  3  Distribution  of sediment-hosted and IOCG  deposits  as a  function of lithospheric thickness.  (a)  Australian  LAB based  on  FR12 converted to  
temperature using  an anelasticity parameterisation calibrated  on local paleogeotherms; black dashed contour = 170  km LAB depth; symbols = deposit  
locations as in  Figure  2, stars = IOCG deposits  (largest is the  Olympic Dam deposit); black/green crosses = geotherms used  as constraints/tests in  
anelasticity calibration. Newly identified thick lithosphere blocks within  northern Australia  are named  (K)imberley, (P)ine Creek and  (M)urphy blocks. (b)  
Cumulative distribution  function (CDF) for  global sediment-hosted  base metals, mass-weighted for 109 PbZn-CD, 147  PbZn-MVT  and  139 Cu-sed  deposits,  
and combination  of all three; grey line/bound = mean  and standard  deviation of 100 sets of equivalent number of randomly drawn continental locations with  
respect to  global LAB enhanced  over Australia. (c) Mineral potential heat map  based  on CDF  distance  with respect to  170 km LAB contour (a)  in areas 
where  stacked  geological provinces contain  lithological proxies for all  four sediment-hosted mineral system components illustrated in  Figure  1; green line = 
underexplored  or  unexplored  portions of the 170 km contour  more than 100  km away from known deposits where prospective rocks lie mostly undercover; 

symbols = deposit locations as in  Figure  3. (d)  Performance  of the mineral potential heat map; solid line = CDF for Australian  sediment-hosted base metals, 
mass  weighted; dark grey = percentage  of Australian  area  with  ≥  mineral potential value  based on distance to  LAB contour; light grey = as before but for the  
clipped  coloured  region  shown in (c). 

massive sulfide and porphyry copper deposits are randomly 
distributed with respect to the LAB edge, while magmatic 
nickel deposits are concentrated in regions of thicker 

lithosphere (see supplementary material of Hoggard et al., 
in press). 

Mineral systems implications  
This  discovery  has  two  important  implications.  First,  the  

clustering  of  sediment-hosted  base  metal  deposits  on  the  
edge  of  present-day  thick  lithosphere,  regardless  of  their  age,  
implies  long-term lithospheric  stability,  spanning  at  least  the  

last  2  billion  years.  Major  pre- to  syn-Paleozoic  faults  and  

shear  zones  of  the  North  Australian  Craton  wrap  around  
blocks  of  thick  lithosphere,  indicating  that  they  have  

influenced  strain  partitioning  and  ore  forming  processes  
through  multiple  tectonic  cycles  (Figure  3a;  Stewart  et  al.,  
2020).  Other  Australian  observations  that  correlate  with  LAB  

steps  include  variations  in  lead  isotopes  from Proterozoic  
galena  and  pyrite  minerals,  long-wavelength  gravity  anomaly  
gradients,  topographic  variations,  the  western  extent  of  

Phanerozoic  sedimentary  basins,  and  the  pattern  of  surface  
drainage  (Huston  et  al.,  2020;  Sandiford  et  al.,  2020).  These  
observations  corroborate  the  longevity  of  cratonic  roots.  

Second,  this  relationship  forces  a  reconsideration  of  
sediment-hosted  base  metal  mineral  system  models,  which  to  
date  have  not  considered  the  mantle  as  a  first-order  control.  

Hoggard  et  al.  (in  press)  highlight  four  important  and  
interlinked  factors  (Figure  1).  (1)  Lithospheric  thickness  steps  
localise  strain  during  rifting,  focusing  the  optimal  juxtaposition  

of  mineral  system components.  Evaporites  and  oxidising  
terrestrial  environments  are  located  inboard,  whereas  
restricted  marine  settings  with  reduced  facies  and  volcanics  

derived  from  shallow  decompression  melting  occur  outboard.  
(2) Rifting  of  thick  lithosphere  results  in  a broader  spatial  and 
temporal  window  for  mineralisation.  Increased  seismogenic 

thickness  results  in  deeper,  longer,  more  widely  spaced 
normal  faults,  and  a  greater  lateral  extent  of  sediments 
deposited  within  grabens.  These  faults  are  also  active  for 

longer  periods.  The  entire  syn-rift  phase  of  basin  formation, 
generally  associated  with  mineralisation,  can  last  50–
100  Myr,  in  contrast  to  standard  continental  rifts  that  typically 

last  <25  Myr. (3)  Crucially,  rifting  of  cratonic  lithosphere 
results  in  deeper  basins  with  lower  geothermal  gradients. 
Given  that  thermodynamic  considerations  limit  metal 

precipitation  conditions  to  less  than  ~200  °C,  these  two 
features  together  substantially  increase  the  depth  extent  of 
the  mineral  system operating  window  compared  with 
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standard lithosphere. (4) Deformation and exhumation along 
the edges of thick lithosphere are often mild, with orogenies 
generally focused in regions of thinner lithosphere. This 

setting therefore allows exhumation of deposits to the near 
surface, while increasing preservation potential through 
subsequent tectonic cycles. Notably, all of these factors 

contribute to cratonic edges being favourable for formation of 
giant deposits, but they do not preclude the generation of 
smaller deposits in standard lithosphere, thereby providing an 

explanation for minor outliers. 

Estimating mineral potential  
New  predictive  power  from  the  LAB  relationship  can  be  
combined  with  screening  of  stacked  geological  provinces  for  

necessary  lithologies.  This  approach  provides  a  new  
perspective  on  the  sediment-hosted  base  metal  potential  of  
Australia,  reducing  the  exploration  search  space  to  just  ~15% 

of  the  continent  with  plenty  of  opportunities  (Figure  3d).  
This  result  highlights  frontier  exploration  areas  and  

allows  estimation  of  undiscovered  sediment-hosted  base  

metal  resources.  Unexplored  or  underexplored  regions  along  
the  prospective  170  km LAB  contour  can  be  mapped  by  first  
projecting  known  deposits  located  within  200  km  onto  the  

contour,  and  then  excising  a  100  km radius  around  them  
(making  the  crude  assumption  that  these  regions  have  been  
explored).  The  remaining  ~3700  km of  the  contour  provides  

an  indication  of  the  frontier  search  space  in  Australia,  the  
majority  of  which  lies  undercover  (Figure  3c).  Globally,  ~26% 
of  the  contour  hosts  known  deposits,  yielding  an  estimated  

average  endowment  of  ~55  kt  of  base  metals  per  kilometre  of  
contour.  Applying  these  values  to  the  length  of  underexplored  
contour  in  Australia  suggests  that  ~50–200  Mt of  base  metals  

(worth  ~$1  trillion)  are  still  to  be  discovered  in  Australian  
frontier  basins.  These  estimates  are  equivalent  to  the  known  
resource  in  the  North  Australian  Zinc  Belt  (~130  Mt  

Pb+Zn+Cu)  and  the  Olympic  Dam IOCG d eposit  (>80  Mt  Cu).  

Conclusion  
The  discovery  that  85% of  sediment-hosted  base  metals, 
including  all  the  world’s  giant  deposits,  are  found  within  
200  km of  the  edge  of  thick  lithosphere  has  (1)  forced  
revision  of  mineral  systems  and  basin  dynamic  models  within  
the  context  of  lithospheric  stability;  (2)  provided  the  first  

statistical  basis  for  translating  mineral  system  models  to  
mappable  proxies  on  global  scales,  and  a  new  means  of  
identifying  frontier  fertile  basins;  and  (3)  indicated,  in  

combination  with  geological  proxies,  that  ~50–200  Mt  of  base  
metals  and  associated  critical  minerals  are  likely  to  be  still  
discovered  in  Australia.  Taken  together,  these  considerations  

suggest  that  the  discovery  of  a  new  world-class  sediment-
hosted  base  metal  minerals  province  in  undercover  Australia  
is  realistic,  and  enable  refocusing  of  exploration  to  achieve  it.  

Datasets  
LAB  grids  can  be  downloaded  from: 
http://pid.geoscience.gov.au/dataset/ga/132624.  
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