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Abstract
The North Australian Zinc Belt is the largest zinc-lead province in the world, containing three of the ten largest known 
individual deposits (HYC, Hilton-George Fisher, and Mount Isa). The Northern Cordillera in North America is the second 
largest zinc-lead province, containing a further two of the world’s top ten deposits (Red Dog and Howards Pass). Despite 
this world-class endowment, exploration in both mineral provinces during the past 2 decades has not been particularly suc-
cessful, yielding only two significant discoveries (Teena, Australia, and Boundary, Canada). One of the most important 
aspects of exploration is to choose mineral provinces and districts within geological belts that have the greatest potential 
for discovery. Here, we present results from these two zinc belts that highlight previously unused datasets for area selection 
and targeting. Lead isotope mapping using analyses of mineralized material has identified gradients in μ (238U/204Pb) that 
coincide closely with many major deposits. Locations of these deposits also coincide with a gradient in the depth of the 
lithosphere-asthenosphere boundary determined from calibrated surface wave tomography models converted to temperature. 
Furthermore, gradients in upward-continued gravity anomalies and a step in Moho depth correspond to a pre-existing major 
crustal boundary in both zinc belts. A spatial association of deposits with a linear mid- to lower-crustal resistivity anomaly 
from magnetotelluric data is also observed in the North Australian Zinc Belt. The change from thicker to thinner lithosphere 
is interpreted to localize prospective basins for zinc-lead mineralization and to control the gradient in lead isotope and geo-
physical data. These data, when combined with data indicative of paleoenvironment and changes in plate motion at the time 
of mineralization, provide new exploration criteria that can be used to identify prospective mineralized basins and define 
the most favorable parts of these basins.

Keywords  Shale-hosted zinc deposits · Cratonic edges · Lead isotopes · Lithospheric-asthenospheric boundary · Upward-
continued gravity · Magnetotellurics

Introduction

Sediment-dominated basins are by far the largest global 
source of zinc and lead, containing 54% and 68%, respec-
tively, of the world’s endowment of these metals (Huston 
et al. 2022). The giant size of some of these deposits makes 
them attractive exploration targets. However, they are dif-
ficult to find as they are rarer than other zinc-lead deposits 

such as volcanic-hosted massive sulfide (VHMS) deposits. 
Despite their attractiveness, very few major sediment-hosted 
zinc-lead deposits have been discovered in the past 2 dec-
ades. One possible reason has been a poor understanding of 
fundamental, large-scale controls on mineralization. Given 
that hundreds of sedimentary basins exist in the world, the 
following are key questions addressed in this study: (1) are 
there ways to screen more prospective from less prospective 
basins, and (2) are there ways to determine the most prospec-
tive parts of favorable basins?

The North Australian Zinc Belt, which is hosted by the 
Paleo- to Mesoproterozoic North Australian Basin System 
(Southgate et al. 2000, 2013), is the richest zinc province in 
the world, containing a total endowment of 89 Mt Zn and 
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41 Mt Pb—10% and 13%, respectively, of global pre-mining 
resources of these metals (Huston et al. 2022). The Northern 
Cordillera of western North America (Siberling et al. 1992; 
Colpron et al. 2006; Nelson et al. 2013), which extends from 
the northwestern conterminous USA through western Can-
ada and into Alaska, is another major zinc province, contain-
ing a total endowment of 72 Mt Zn and 33 Mt Pb (Huston 
et al.2022). A striking feature of both zinc-lead provinces 
is that each had several distinct mineralizing events that 
occurred over a period of many tens to hundreds of mil-
lions of years. In both provinces metallogenic lightning has 
struck twice, actually many times, raising the possibility that 
some fundamental feature of these metallogenic provinces 
has enhanced the metal endowment.

In this contribution, we build on previous work by Hobbs 
et al. (2000), Southgate et al. (2013), Gibson et al. (2017), 
Hoggard et al. (2020), Huston et al. (2020), and Hayward 
and Paradis (2021). Hobbs et al. (2000) presented evidence 
that the major zinc-lead deposits of the North Australian 
Zinc Belt are associated with a prominent gravity “worm,” 
which marks a horizontal gradient in upward-continued 
gravity data. Southgate et al. (2013) and Gibson et al. (2017) 
also presented evidence that zinc-lead deposits in this belt 
and parts of the Northern Cordillera are associated with the 
edges of continental shelves or platforms. Here, we present 
evidence that the distribution of basin-hosted zinc-lead 
deposits in these provinces is fundamentally controlled by 
cratonic edges that are visible in multiple datasets, includ-
ing lead isotope, potential field, surface-wave tomographic, 
reflection seismic, and magnetotelluric data. Although lead 
isotope, reflection seismic, and magnetotelluric data are 
restricted in coverage due to acquisition logistics, potential 
field data (e.g., gravity and magnetic) are available globally, 
albeit at different resolutions, in addition to a range of global 
tomographic models (c.f. Hoggard et al. 2020). The continu-
ity of these latter datasets over large parts of the world facili-
tates their first-order use to identify prospective basins at the 
global, continental, and province scales (Lawley et al. 2022).

All of the above datasets are used herein to answer the 
two key questions identified above. We demonstrate that 
basin-hosted zinc-lead deposits are associated with cratonic 
edges and that the resolutions of different datasets enable 
their use at different stages of exploration. Moreover, as the 
datasets presented in this study reflect different geochemi-
cal and geophysical properties of the host provinces, using 
all in combination provides new and more robust insights 
into geological processes that control basin-hosted zinc-lead 
deposits and districts. Although we have concentrated on 
zinc, it is possible or even likely that some of the same data-
sets can be used in understanding the genesis of, and explo-
ration for, other types of basin-hosted mineral deposits, as 
demonstrated by Hoggard et al. (2020) for sediment-hosted 
copper deposits.

Basin‑hosted zinc‑lead deposits—timing 
of mineralization and terminology

Sedimentary basins host a wide range of zinc-lead depos-
its, some clearly epigenetic, but others formed either during 
sedimentation or early diagenesis. Although Mississippi 
Valley–type deposits are generally accepted products of 
as epigenetic mineralization that formed after lithification 
of the host rocks (Leach et al. 2005; Wilkinson 2014), the 
timing of shale-hosted1 zinc-lead mineralization has been 
the topic of significant debate during the last half-century. 
Some authors (Williams 1978; Kelley et al. 2004a,b; Gadd 
et al. 2016, 2017; Johnson et al. 2015, 2018; Slack et al. 
2017; Spinks et al. 2021) have advocated an early diagenetic 
timing, whereas others have argued for deposition during 
sedimentation (Carne and Cathro 1982; Goodfellow et al. 
1993; Large et al. 2005) or during late diagenesis or basin 
inversion (Broadbent et al. 1998; Gibson et al. 2017). Advo-
cates of the syn-sedimentary timing have termed these shale-
hosted deposits “SEDEX” (sedimentary exhalative: Carne 
and Cathro 1982), historically the most commonly used term 
for these deposits. Given the significant debate as to the tim-
ing of mineralization, we prefer to use a purely descriptive 
term such as “shale-hosted” rather than SEDEX. Leach et al. 
(2005) proposed the term “clastic-dominated” (CD) as an 
alternative non-genetic term.

At about the same time that the term SEDEX was coined, 
Morganti (1981) proposed a classification of basin-hosted, 
stratiform deposits by basin type, recognizing three types: 
(1) intracratonic basin–type deposits, (2) flysch basin–type 
deposits, and (3) platformal-marginal–type deposits. We 
have used the philosophy of assessing basin environment 
for deposit classification and adapted the Morganti (1981) 
approach along the lines used by Barrie and Hannington 
(1999) for VHMS deposits. In this classification of VHMS 
deposits, classifications are based on the lithological suc-
cession that hosts the deposit. For shale-hosted zinc-lead 
deposits, we recognize two types, siliciclastic-mafic and 
siliciclastic-carbonate (see also Hofstra et al. 2021). The 
former includes deposits hosted by siliciclastic-dominated 
basins with significant syn-depositional mafic igneous rocks 
(basaltic lavas and volcaniclastic rocks or high-level mafic 
sills) but without volumetrically major carbonate units. The 
siliciclastic-carbonate type, in contrast, refers to deposits 
hosted by basins with abundant siliciclastic and carbon-
ate units but that mostly lack coeval mafic igneous rocks. 
The siliciclastic-mafic type corresponds to the flysch basin 
type of Morganti (1991), whereas the siliciclastic-carbonate 

1  Although in many cases, the host rocks include siltstone we use the 
term “shale” to refer to any very-fine-grained siliciclastic sedimentary 
rock.



Mineralium Deposita	

1 3

type corresponds to the intracratonic basin and platformal-
marginal types.

Our classification is also broadly consistent with the clas-
sification of Cooke et al. (2000), which is also based indi-
rectly on the characteristics of basin fill. Cooke et al. (2000) 
inferred that their McArthur-type deposits were formed from 
oxidized brines produced by oxidized basins, whereas their 
Selwyn-type deposits were formed from reduced brines pro-
duced by reduced basins. The McArthur-type deposits cor-
respond broadly to our siliciclastic-carbonate type, and the 
Selwyn type corresponds broadly to our siliciclastic-mafic 
types.

The North Australian Zinc Belt

The North Australian Zinc Belt (Fig. 1) contains three of the 
ten largest zinc-lead deposits in the world (McArthur River 
[HYC—Here’s-Your-Chance], Hilton-George Fisher, and 
Mount Isa), as well as several smaller, yet still important, 
deposits (Century, Dugald River, Teena, Lady Loretta, and 
Cannington). Among these, only Teena is a recent (2013) 
discovery (Taylor et al. 2017). In addition, significant cop-
per-cobalt and zinc-lead resources are being defined at the 
Walford Creek deposit (Valenta 2020).

Figure 1a shows the surface geology of the North Austral-
ian Zinc Belt and the location of sediment-hosted zinc-lead, 
sediment-hosted copper-cobalt, iron oxide-copper–gold, and 
orogenic gold deposits. The North Australian Basin System, 
which hosts the North Australian Zinc Belt, has been sub-
divided into three superbasins: the 1790–1740 Ma Leich-
hardt, the 1730–1640 Ma Calvert, and the 1640–1595 Ma 
Isa superbasins (Southgate et al. 2013; Gibson et al. 2016). 
The Leichhardt Superbasin consists of a rift, filled with con-
tinental tholeiites, fluvial to lacustrine siliciclastic rocks, and 
minor carbonate rocks (Jackson et al. 2000; Gibson et al. 
2018). Figure 2 shows a schematic east–west cross-section 
illustrating sedimentary facies assemblages and spatial and 
temporal relationships of the Calvert Superbasin and the 
locations of basin-hosted deposits within the various facies 
assemblages. The Calvert Superbasin consists of shallow-
marine siliciclastic and carbonate rocks in the west, with 
deeper-marine siliciclastic rocks in the east, that mostly lack 
carbonates but contain coeval mafic sills and possible lavas 
(Fig. 2; Jackson et al. 2000; Southgate et al. 2013; Withnall 
and Hutton 2013; Gibson et al. 2018). Deposition of the 
siliciclastic-dominated succession in the east coincided 
with erosion and development of the Gun unconformity 
and emplacement of granitic rocks to the west (Neumann 
et al. 2009). With the conclusion of rifting and rift-related 
magmatism toward the end of Calvert time, passive mar-
gin conditions became widely established across northern 
Australia. The uppermost Isa Superbasin postdates passive 

margin formation and consists of fluviatile to deep-marine 
sandstone, siltstone, and dolostone (Southgate et al. 2000).

The North Australian Basin System has been com-
partmentalized into third- and fourth-order sub-basins by 
long-lived, north-northeast- and northwest-striking faults 
(Fig. 1a). The former are steep to subvertical and thought 
to have been inherited from the underlying ≥ 1840 Ma crys-
talline basement (Gibson et al. 2017; Hejrani et al. 2020). 
The northwest-striking faults were mainly developed dur-
ing formation of the Calvert Superbasin as a right-stepping 
en echelon array of crustal-scale normal faults along the 
western margin of the Lawn Hill and Mount Isa regions, 
where the majority of zinc deposits are located (Fig. 1a). 
This fault array originated during northeast–southwest-
directed extension and broadly marks the western limits 
of bimodal magmatism and lithospheric thinning that took 
place during and before formation of the Calvert Superbasin 
(possibly indicating a craton edge). Together with the older 
basement faults, these Calvert-age faults were reactivated 
during later basin-forming events and strongly influenced the 
location and distribution of younger, more easterly trending 
sub-basins of the Isa Superbasin. Calvert-age faulting and 
rift-related basaltic magmatism concluded at or before ca. 
1655 Ma, to be followed by thermal subsidence, basin inver-
sion, and orogenesis from ca. 1650 to ca. 1640 Ma (River-
sleigh Event; Withnall and Hutton 2013; Gibson et al. 2017). 
Subsequent to the Riversleigh Event, extension resumed in 
a north–south-directed orientation and continued until ca. 
1620 Ma when terminated by the onset of the Isan Orog-
eny (e.g. Gibson et al. 2017). Orogenesis and sedimentation 
in the Isa Superbasin ended around 1575 Ma. No basaltic 
rocks are present in this basin with the exception of minor, 
but locally abundant, tuff units (e.g., Davidson and Dash-
looty 1993) and late ca. 1620 Ma rhyolite sills; the basin was 
largely amagmatic (Gibson et al. 2018).

The shale-hosted zinc-lead deposits are hosted by slope 
facies of the Calvert and Isa superbasins (Figs. 1a and 2). 
The oldest deposits, which include the siliciclastic-mafic 
Cannington and Pegmont deposits, formed at ca. 1680 Ma 
in the eastern, siliciclastic-dominated, mafic-rich part of 
the Calvert Superbasin. Siliciclastic-carbonate deposits are 
hosted by the platform/shelf facies of the Calvert and the 
Isa superbasins, including the ca. 1665 Ma Dugald River 
deposit, the ca. 1655 Ma Mt Isa and Hilton-George Fisher 
deposits, the ca. 1645 Ma Lady Loretta, the ca. 1640 Ma 
McArthur River and Teena deposits, and the ca. 1575 Ma 
Walford Creek and Century deposits. All of these deposits 
are hosted by dolomitic and carbonaceous siltstone units 
within successions that contain abundant carbonate but lack 
significant volcanic rocks. Southgate et al. (2013) and Gib-
son et al. (2017) indicated that these deposits are associated 
with the transition between shallow-water shelf and deeper-
water basinal environments. These settings bring together 
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the essential mineral system components of saline basinal 
brines, source rocks, and the deposition of mixed reductants 
and carbonates necessary for the deposition of zinc and lead 
sulfide minerals (Large et al. 2005).

The Northern Cordillera of western North 
America

The northern segment of the Cordilleran Orogen of western 
North America (Northern Cordillera) has a large and diverse 
metallogenic endowment that reflects its diverse geology 
and a protracted tectonic history that occurred along and 
offshore of the western and northern Laurentian continental 
margin since Mesoproterozoic time (Fig. 3a). The Red Dog 
(Alaska) and Howards Pass (Yukon-Northwest Territories) 
siliciclastic-carbonate and Sullivan (British Columbia) silici-
clastic-mafic-deposits are among the largest shale-hosted, 
zinc-lead deposits in the world (Leach et al. 2005). Smaller 
deposits of similar type in proximity to these include the 
Anarraaq, Lik, and Aktigiruq deposits in the Red Dog dis-
trict; the Drenchwater deposit in the central Brooks Range 
(all siliciclastic-carbonate deposits); the Tom, Jason, and 
recently discovered Boundary deposits in the Macmillan 
Pass district (Yukon); and the Faro, Dy, Grum, Swim, and 
Vangorda deposits in the Anvil district (Yukon). Barite 
deposits are spatially and/or genetically related to many of 
these Zn-Pb deposits (Moore et al. 1986; Goodfellow et al. 
1993; Fernandes et al. 2017; Magnall et al. 2020), and in 
the Brooks Range of Alaska, some of the barite bodies are 
extraordinarily large (~ 1 Gt: Kelley et al. 2004a; Kelley and 
Jennings 2004; Johnson et al. 2004). Sub-seafloor replace-
ment of carbonate (e.g., Kelley et al. 2004a) or barite (Kel-
ley et al. 2004b; Magnall et al. 2020) by metal-bearing flu-
ids has been documented as an important factor for sulfide 
deposition in many of these deposits. Gibson et al. (2017) 
indicated that in the Selwyn Basin, like the North Australian 
Zinc Belt, many of the deposits are spatially associated with 
the transition from shallower-water shelf into deeper-water 
basinal environments.

The Northern Cordillera includes autochthonous and 
parautochthonous strata of the western North American 

margin and allochthonous, mobile crustal fragments (ter-
ranes) that formerly resided in the northeastern Pacific 
Ocean basin. The tectonic collage was built up through the 
amalgamation of terranes and their accretion to the conti-
nental margin between late Paleozoic and Cenozoic time 
(Nelson et al. 2013). The geologic terranes have diverse 
origins and histories and are generally grouped by cratonic 
associations, lithotectonic setting, and tectonic evolution 
(e.g., Coney et al. 1980; Silberling et al. 1992; Colpron et al. 
2006).

The eastern part of the Northern Cordillera consists of 
autochthonous and parautochthonous continental margin 
rocks deposited along the western margin of Laurentia, or 
the North American Craton, together with overlying Prote-
rozoic to Triassic cover rocks. The North American Craton 
extends beneath part of the Cordillera (Ross 1991; Cook 
et al. 2012; Nelson et al. 2013; Hayward 2015). During the 
early Paleozoic, shallow-water platformal strata and adjacent 
deeper water basinal strata were deposited along the margin.

In the southern part of the Northern Cordillera, the North 
American Craton is dominated by the Belt-Purcell Basin. 
This a Mesoproterozoic, clastic-dominated basin that con-
tains the giant Zn-Pb-Ag Sullivan deposit as well as the 
Ag-Pb–Zn Coeur d’Alene Cordilleran vein district in Idaho. 
At ca. 1475 ± 4 Ma (Slack et al. 2020) and ca. 1500 Ma 
(Ramos and Rosenberg 2012), respectively, these are the 
oldest zinc-lead deposits that formed along the western mar-
gin of the North American Craton.

West of the craton and continental margin rocks, the 
Northern Cordillera consists of allochthonous terranes, 
most of which accreted to the margin beginning in the Per-
mian and continuing into Cretaceous time. These terranes 
include volcanic, plutonic, sedimentary, and metamorphic 
assemblages of the peri-Laurentian, Arctic-northeastern 
Pacific, and Coastal “realms” that originated as magmatic 
arcs, accretionary complexes, microcontinents, and floors 
of ocean basins (Nelson et al. 2013). The Intermontane 
terranes of the peri-Laurentian “realm” (Yukon-Tanana, 
Quesnel, Stikine) have affinities to western Laurentia (North 
American Craton) and evolved west of the margin following 
establishment of outboard subduction zones in the Devo-
nian. The Intermontane terranes were progressively accreted 
to the margin from Permian closure of the Slide Mountain 
marginal ocean to terminal amalgamation in the Jurassic 
(Murphy et al. 2006).

Terranes of Arctic-northeastern Pacific affinity lie west 
and north of the peri-Laurentian terranes. The Arctic terrane 
is a large, composite allochthonous crustal block that origi-
nated in the northeastern Arctic region near Baltica (Miller 
et al. 2011) or from Laurentia (Canadian Arctic or Atlantic 
margin: Strauss et al. 2013). These rocks constitute Neo-
proterozoic to Paleozoic continental shelf-slope strata and 
younger peri-cratonic rocks of the southern Brooks Range 

Fig. 1   Maps of North Australian Zinc Belt showing a simplified sur-
face geology (Raymond et al 2012), b variations in μ as determined 
from lead isotope analyses from mineral deposits and occurrences 
(Carr et al 2001; this study: Appendix E1; indicated faults are from 
Murphy et  al 2011), c variations in depth of lithosphere-astheno-
sphere boundary as determined from surface-wave tomography (Hog-
gard et al. 2020), d 30-km upward-continued Bouguer anomaly map 
(Lane et  al. 2020), and e conductivity model at a depth of 36  km 
using data from the AusLAMP magnetotelluric survey (Duan et  al. 
2021). Locations of significant mineral deposits are overlain as dif-
ferent symbol types. Traces of reflection seismic lines 94MTI-01 and 
07GA-IG1 are shown in part (c)

◂
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(Moore et al. 1994). The continental fragments that make up 
the Arctic terrane were derived from both Laurentia and Bal-
tica, which were juxtaposed against northern Laurentia dur-
ing the Devonian to Mississippian (Strauss et al. 2013) and 
then underwent collisional orogenesis in the Brooks Range 
during the Mesozoic (Till 2016). The Arctic terrane also 
includes the Seward Peninsula, which is primarily under-
lain by metamorphosed Neoproterozoic to middle Paleozoic 
rocks with Baltica affinity (Till et al. 2014).

The rest of Alaska, south of the Brooks Range and out-
board of the Laurentian and peri-Laurentian terranes, is 
made up of a diverse assemblage of pericratonic, arc, and 
oceanic terranes (Western Alaska in Fig. 3a) that were pre-
dominately accreted during the Mesozoic (e.g., Ridgway 
et al. 2002; Trop and Ridgway 2007; Hampton et al. 2010; 
Box et al. 2019).

Post-Caledonian (Devonian-Mississippian) extension, 
which affected both Arctic Alaska and the western margin 
of the North America Craton (Miller et al. 2011), provided 
the setting for formation of some of the major sediment-
hosted sulfide and barite deposits. The westward drift of 
the North American Craton during Cretaceous and early 
Paleogene time caused intense compressional deformation 
in the Cordillera and focused in two plutonic-metamorphic 

belts (Monger and Gibson 2019), the Coastal plutonic com-
plex and the Omineca Belt (not shown in Fig. 3a), which 
separate the three main divisions of the Cordillera: the outer 
Arctic-northeastern Pacific (Outboard and Insular) terranes, 
the central peri-Laurentian (Intermontane terranes), and the 
North American Craton.

In addition to the Mesoproterozoic deposits, mineraliz-
ing events occurred in the Northern Cordillera during the 
Paleozoic at younger than ca. 560 Ma (Cottonbelt district, 
British Columbia), ca. 520 Ma (Anvil Range district, Yukon 
Territory), ca. 440 Ma (Howards Pass district, Yukon Terri-
tory), and ca. 380–365 Ma (Macmillan Pass district, Yukon 
Territory, and Gataga district, British Columbia) (Paradis 
et al. 1998; Goodfellow 2007; Kuiper et al. 2011; Kelley 
et al. 2016).

Methods and data sources

Although a relationship between continental margins and 
the distribution of shale-hosted zinc-lead deposits has been 
inferred by Nelson et al. (2002) and Leach et al. (2005), 
identification of such margins in complexly deformed ter-
ranes is difficult. In this contribution, we show that a range 

Fig. 2   Schematic east–west cross-section illustrating facies assem-
blages and spatial and temporal relationships of the Leichhardt and 
Calvert Superbasins in the North Australian Zinc Belt. Schematic 

locations of shale-hosted deposits are shown to illustrate relationships 
with superbasin architecture and evolution. Modified after Southgate 
et al. (2013)
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Fig. 3   Maps of the Northern Cordillera of western North America 
showing a simplified surface geology (Colpron and Nelson 2020), b 
variations in μ as determined from lead isotope analyses from min-
eral deposits and occurrences (Church et  al. 1987; Thorpe 2008: 
Appendix E2), c variations in the depth of lithosphere-asthenosphere 
boundary as determined from surface wave tomography (Hoggard 

et  al. 2020), and d 30-km upward-continued Bouguer anomaly map 
(Phillips et al. 1993; Saltus et al. 2008; Geological Survey of Canada 
2017). The locations of significant mineral deposits are overlain as 
different symbols. The trace of Southern Canadian Cordillera reflec-
tion seismic traverse is shown in part (c)
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of geochemical and geophysical datasets can be used to map 
these margins and can, when combined with basin charac-
teristics, identify prospective provinces at global to district 
scales.

Lead isotope data

The distribution of lead isotope data is irregular as these 
were collected almost exclusively from mineral deposits and 
occurrences. The North Australian Zinc Belt and the North-
ern Cordillera have among the spatially densest lead isotope 
coverages in the world. For the North Australian Zinc Belt, 
we have used the dataset of Carr et al. (2001) supplemented 
by new data collected as part of this study (Appendix E1). 
For the Northern Cordillera, our combined dataset is mostly 
from Church et al. (1987) and Thorpe (2008) (Appendix E2).

All lead isotope analyses were obtained from galena and 
other ore minerals such as pyrite or from gossans. Analy-
ses were divided into two groups, lead-rich (samples with 
Pb ≥ 1000 ppm) and lead-poor (< 1000 ppm Pb). For lead-
rich samples, measured ratios were inferred to approximate 
initial ratios. For lead-poor samples, initial ratios were cal-
culated by removing ingrown lead where lead, uranium, and 
thorium concentration data were available and an estimate 
of the age of mineralization could be made. The initial ratios 
were used to calculate isotopic ratios using the lead isotope 
evolution model of Stacey and Kramers (1975).

As many of the deposits/occurrences have yielded mul-
tiple analyses, the most precise and least radiogenic (with 
oldest model age) analysis was used for data contouring. 
In addition, to guard against extreme ingrowth, which can 
significantly affect μ, the dataset was culled to remove anal-
yses with young model ages, which can result in anoma-
lously high μ. This process took into account varying ages 
of deposits and is summarized in Appendix E3. In general, 
lead-poor samples with model ages 100 Myr younger than 
the deposit age range in the region were culled from the 
dataset. Lead-rich analyses were not culled except for sam-
ples hosted by younger basins (these samples commonly 
have anomalously radiogenic J-type lead). Contouring was 
undertaken using the Esri ArcGIS v10.8.1 average nearest-
neighbor tool following the methods of Champion and Hus-
ton (2016).

Surface wave tomography

Surface waves are a form of seismic energy that travels 
along the interface between the ground and atmosphere. 
These seismic waves have typical periods of 10 to 500 s 
and exhibit dispersive behavior, resulting in particularly high 
vertical resolution (~ 25 km) of seismic velocity structure in 
the upper ~ 300 km of the Earth. Since the seismic velocity 
of silicate rocks is strongly dependent on temperature, this 

velocity can therefore be used to map variations in the ther-
mal structure of the conducting lithosphere, which is related 
to lateral changes in plate thickness. In this study, we adopt 
the scheme of Richards et al. (2020), which uses a recent 
parameterization for anelastic deformation of mantle rocks 
at seismic frequencies that is calibrated using independent 
estimates of mantle temperature structure from oceanic plate 
cooling models and continental geotherms derived from 
xenocryst thermobarometry.

We constructed a background upper mantle seismic veloc-
ity structure using the global tomographic model SL2013sv 
(Schaeffer and Lebedev 2013), locally enhanced with higher 
resolution regional models FR12 in Australia (Fishwick and 
Rawlinson 2012) and SL2013NA in North America (Schaef-
fer and Lebedev 2014). Having converted these velocities to 
temperature, lithospheric thickness is estimated using the 
depth of the 1175 °C isotherm. Additional details, including 
data and maps, can be found in Hoggard et al. (2020).

Gravity data

Gravity data measure changes in the gravitational field 
related to the distribution of mass, including lateral changes 
in rock density from the Earth’s surface to the core. The 
grids of Bouguer gravity were calculated from national data-
bases available for Australia (Lane et al. 2020), the con-
terminous USA (Phillips et al. 1993), Alaska (Saltus et al. 
2008), and Canada (Geological Survey of Canada 2017). For 
the Northern Cordillera, 2-km grids of the Bouguer grav-
ity anomalies were merged from Canada, Alaska, and the 
conterminous USA to create a seamless Bouguer anomaly 
grid across the study area. The Bouguer gravity grids for 
Australia and the Northern Cordillera were then upward 
continued2 to 30, 50, and 100 km to evaluate how density 
sources and their edges, as reflected in gravity gradients, 
change with progressively deeper parts of the lithosphere.

Magnetotelluric data

The magnetotelluric method utilizes variations in Earth’s 
naturally occurring magnetic field and induced electrical 
fields to derive resistivity structures of the crust and upper 
mantle. Long-period (10–10,000 s) magnetotelluric data 
were acquired in northern Australian as part of the Aus-
tralian Lithospheric Architecture Magnetotelluric Project 

2  Upward continuation is a mathematical process whereby the geo-
physical response of potential field data (gravity and magnetic data) 
is modeled further away from the source. For example, upward con-
tinuation to a height of 10 km simulates the response expected from 
a plane flying 10 km above the surface (where the gravity data was 
originally gathered). Upward continuation highlights low-frequency 
variations in the data, which reflect deeper features.
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(AusLAMP) under the Geoscience Australia’s Exploring for 
the Future (EFTF) program. Longer-period data are sensi-
tive to features far from the observation site, including the 
upper mantle, whereas shorter-period data can be used to 
image closer features in the middle to upper crust. Resulting 
3D resistivity models at depths of ~ 10 km to ~ 200 km give 
insights into the distribution of conductive rocks through the 
lithosphere. Further details are found in Duan et al. (2021). 
A similar study has not been undertaken across the Northern 
Cordillera, precluding consideration of this dataset for that 
region.

Seismic reflection data

Since 1994, Geoscience Australia, in collaboration with the 
Geological Survey of Queensland, acquired a series of deep 
seismic reflection transects in northern Queensland (Korsch 
et al. 2012; Korsch and Doublier 2016). Over 3500 km of 
data were acquired on 16 traverses. Since the early 2000s, 
the seismic data has been acquired using three Hemi-60 
vibrators with data collected to a 20 s two-way travel time. 
The data were processed using the Disco/Focus seismic pro-
cessing package. The processed images were interpreted by 
a team of geologists and geophysicists from Geoscience 
Australia, the Geological Survey of Queensland, and col-
laborators from Australian universities. Korsch et al. (2012) 
provide information on the surveys and final interpretations; 
Jones et al. (2009) reported on processing methods.

Between 1984 and 1988, Lithoprobe, Canada’s multidis-
ciplinary research program for earth sciences, in collabora-
tion with the Geological Survey of Canada, acquired seismic 
reflection data along a traverse in the southern part of the 
Northern Cordillera (location shown in Fig. 3c), just to the 
north of the US border (at ~ 50°N latitude). This transect 
extended from the North American Craton in the east to the 
west coast (Cook 1995; Hammer et al. 2010) and involved 19 
discrete seismic lines that were merged to form the Cordil-
leran transect. The data were collected using four 20,000 kg 
vibrators to 18 s two-way travel time. Data were processed 
using non-standard approaches as described by Cook et al. 
(1992). The data were interpreted by geophysicists and geol-
ogists from Canadian universities and the Geological Survey 
of Canada. Clowes (1990) and Cook et al. (1992) document 
data acquisition, processing, and interpretation.

Results

Variations in lead isotope data

Previous studies (Huston et al. 2014; Hollis et al. 2019) 
have shown that variations in parameters such as μ 
(238U/204Pb), as determined from lead isotope data from 

mineral deposits, can reveal spatial controls and indicate 
fertility of mineral provinces. Figure 1b shows spatial vari-
ations in μ in the North Australian Zinc Belt. Along the 
eastern margin of this image, μ increases from northeast 
to southwest. Significantly, most siliciclastic-carbonate 
zinc-lead deposits and the Tick Hill orogenic gold depos-
its are localized along a north-northwest-trending break 
in μ values. Deposits occurring along the break are rela-
tively consistently spaced about 140 km apart. Iron oxide-
copper–gold and siliciclastic-mafic zinc-lead deposits are 
located to the east of this break and are characterized by 
lower μ. Other parameters determined from lead isotope 
data, including κ (232Th/238U) and ω (232Th/204Pb), define 
a similar break (not shown).

In detail, the prominent north-northwest-trending break 
in μ appears to be en echelon, broadly following the trend of 
the northwest-trending Calvert-age (1730–1640 Ma) struc-
tures, with individual offsets or steps controlled by the posi-
tion of the underlying north-northeast basement structures 
(Fig. 1b). As both sets of structures are thought to have been 
active during formation of the Calvert and Isa superbasins 
and related sub-basins, it would appear that variations in μ 
mimic development of these sub-basins along the isotopic 
break. Although the break in μ appears to be controlled 
by basement structures, the break itself cuts across the 
north–south grain of the surface geology and across trends 
in total magnetic intensity, particularly in the east.

Figure 3b shows spatial variations in μ for the Northern 
Cordillera. Like the North Australian Zinc Belt, all major 
shale-hosted zinc-lead deposits, except those of the Red Dog 
district, are spatially associated with a break in μ values from 
higher values inboard to lower values outboard of the bound-
ary of the North American Craton and the allochthonous ter-
ranes. Further outboard of the North American Craton, the μ 
continues to decrease with major VHMS districts associated 
with zones of lowest μ, similar to the relationship noted for 
Archean and Paleoproterozoic VHMS deposits elsewhere 
in the world (Huston et al. 2014). In detail, major shale-
hosted zinc-lead districts are associated with higher-order 
complexities in the μ distribution patterns such as re-entrants 
along the ancient continental margin.

Of all the datasets considered, the spatial relationship of 
deposits with μ gradients is spatially the most precise, but 
this is only possible due to the density of data in both prov-
inces. Very few zinc-lead provinces globally have a similar 
density of lead isotope data. The only province with a com-
parable data density is the Irish Midlands, where deposits 
are also associated with a gradient in μ (Hollis et al. 2019). 
Collectively, the distribution patterns in the North Australian 
Zinc Belt, the Northern Cordillera, and the Irish Midlands 
suggest that local zones (i.e., districts) with complex vari-
ations in μ (e.g., re-entrants) may define more prospective 
areas within basins. As such, lead isotope datasets may be 
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useful in identifying new plays at the district-scale, even in 
brownfield provinces.

Lithosphere‑asthenosphere boundary as defined 
by surface wave tomography

Figure 1c shows that the locations of major deposits in the 
North Australian Zinc Belt coincide with the transition from 
thicker to thinner lithosphere, mapped using surface wave 
tomography (Hoggard et al. 2020). All deposits in this belt—
including stratiform zinc-lead deposits hosted by carbonate-
rich and siliciclastic-dominated successions and epigenetic 
iron oxide-copper–gold deposits—are within 100 km of the 
170-km thickness contour of the lithosphere-asthenosphere 
boundary (LAB). Major deposits are unknown outside of 
this corridor, even though the North Australian Basin Sys-
tem extends well beyond it. Similar to the lead isotope pat-
tern, the edge of thick lithosphere cuts across the regional 
geological and total magnetic intensity grains to the east 
and north of McArthur River (compare Fig. 1b and c with 
Fig. 1a), suggesting a fundamental, deep-seated control on 
mineralization. Figure 3c shows that there is a broad cor-
relation of basin-hosted zinc-lead deposits in the Northern 
Cordillera with the 170-km LAB contour, although in detail 
some of these deposits are located outboard of this contour 
(e.g., Macmillan Pass and Howards Pass districts). Hayward 
and Paradis (2021) suggested that the host basin may have 
been displaced 100 km to the northeast relative to basement.

Analysis by Hoggard et al. (2020) of a global correlation 
between LAB depth and the distribution of sediment-hosted 
deposits showed that 85% of zinc resources and 85% of cop-
per resources in basins are located within 200 km of the 
170-km contour. The correlation with the LAB, originally 
identified in the North Australian Zinc Belt, thus applies 
globally.

Gravity data

Indications that sediment-hosted zinc-lead deposits were 
associated with regional-scale breaks in geophysical data 
were originally documented by Hobbs et al. (2000). This 
study reported that major zinc-lead deposits in the North 
Australian Zinc Belt are aligned along a composite gravity 
“worm” or horizontal gradient in Bouguer anomaly gravity 
data. Persistence of this worm through upward continuation 
of the data indicates a major crustal discontinuity at depth.

Figure 1d illustrates variations in the Bouguer gravity 
anomaly for the North Australian Zinc Belt upward-con-
tinued to 30 km. The image defines a broadly north-north-
west-trending gravity high in Queensland that turns to the 
northwest in the Northern Territory. In Queensland, this 
gravity high is flanked by low-gravity anomaly zones to the 
west and east and is transected by several northeast-trending 

discontinuities that translate the southern part of the high-
gravity zone to the southwest (i.e., dextral displacement). 
The western margin of the high gravity anomaly zone is the 
Rufus Fault, the eastern margin corresponds to the Gidyea 
Structure (Figs. 4a,b and 5), and the main discontinuity cor-
responds to the Quamby-Fountain Range Fault at surface. 
In the far south, the gravity high is truncated by the Cork 
Fault, which juxtaposes the North Australian Craton with 
the Thomson Province of the Phanerozoic Tasman Element 
to the southeast. Similar, though less well-defined, patterns 
are present in the 15-, 50-, and 100-km upward-continued 
images (not shown). Using the basin architecture model of 
Southgate et al. (2013: Fig. 2), the gravity high is associated 
with the outboard, deeper-water part of the basin, whereas 
the gravity low is associated with the inboard, shallow water 
part of the basin that existed during Calvert and Isa time. 
The horizontal gravity gradient appears to mark the con-
tinental margin during evolution of the North Australian 
Basin System.

Most siliciclastic-carbonate shale-hosted zinc-lead depos-
its are localized along the gravity gradient that defines the 
western margin of this high gravity anomaly, which largely 
coincides with the 170-km LAB contour. The McArthur 
and Walford Creek districts are spatially associated with re-
entrants on the western margin of the gravity high. Silici-
clastic-mafic shale-hosted zinc-lead deposits (e.g., Can-
nington) and iron-oxide copper–gold deposits (e.g., Ernest 
Henry) are restricted to the eastern edge of the high grav-
ity anomaly zone. The western margin of the high gravity 
anomaly and the 170-km LAB contour broadly coincide to 
the north of Mount Isa. In the vicinity of Mount Isa, how-
ever, the gravity gradient and 170-km LAB contour diverge 
(compare Fig. 1c and d). The significance of this divergence 
is not known and requires further analysis.

Upward continuation of gravity is often used to distin-
guish shallow from deeper density sources (Jacobsen 1987). 
Although shallow sources can be uniquely identified, longer-
wavelength gravity anomalies can result from either deeply 
buried sources or from extensively distributed shallow 
sources such as basins. As shallow geological features in 
this area comprise Phanerozoic basins without significant 
volcanism (Fig. 1a), the high gravity anomaly likely reflects 
a deep, dense feature. In upward-continued gravity anoma-
lies at a height z, the depth of the sources is approximately 
z/2 or deeper (Jacobsen 1987). As the gravity gradient is 
present in the 30- 50-, and 100-km upward continuations, 
the change in density structure persists from the mid-crust 
into the lithospheric mantle. The gravity gradient associ-
ated with the siliciclastic-carbonate shale-hosted deposits 
separates low-density rocks to the southwest from higher-
density rocks to the northeast. The Leichhardt River Trough 
is positioned over these denser rocks and contains a large 
thickness (to 8 km) of mafic igneous rocks (Bain et al. 1992).



Mineralium Deposita	

1 3

Major shale-hosted deposits in the Northern Cordil-
lera of western North America are also associated with 
a (smaller amplitude) gradient in the 30-km upward-con-
tinued gravity image (Fig. 3d) as well as with gradients in 
the 15-, 50-, and 100-km upward-continued images (not 

shown), as also noted by Hayward and Paradis (2021). The 
relationship in this province differs from that in the North-
ern Australian Zinc Belt in two important ways. First, the 
gradient is not as strong as in the North Australian Zinc 
Belt, and second, the gradient has the opposite sense: the 

Fig. 4   Cross-sections showing architecture of the crust and lith-
ospheric mantle based upon estimates of the depth of the lithosphere-
asthenosphere boundary (Hoggard et al. 2020) and seismic transects 
(Cooke et  al. 1992; Drummond et  al. 1997; Goleby et  al. 1998; 
Korsch et  al. 2012): a east–west transect across the southern part 
of the North Australian Basin System (based on reinterpretation by 
R Korsch and M Doublier (unpublished) of 94MTI-01 (Drummond 
et al. 1997; Goleby et al. 1998)), b northeast-trending transect across 
the eastern margin of the North Australian Basin System showing 
the geometry of the Gidyea Structure (based on seismic line 07GA-
IG1 (Korsch et al. 2012) in the northwest and extended to the south-

west based on extrapolation of 94MTI-01 (Drummond et  al. 1997; 
Goleby et  al. 1998)), and c east–west transect across the southern 
part of the Northern Cordillera of western North America. Cross-
section (a) equates to the southwestern part of 07GA-IG1 as extended 
to the southwest as a dashed line in Fig. 1c. Cross sections (b) and 
(c) equate to 94MTI-01 and Lithoprobe seismic traverses shown 
in Figs.  1c  and 3c, respectively. Approximate location of signifi-
cant nearby deposits have projected onto the transects. The Sullivan 
deposit projects just to the east of the eastern extent of (c). Symbols 
for deposit types are after Fig. 1
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low-gravity zone is outboard relative to margin of the 
North American Craton.

Magnetotelluric data

Figure 1e shows the 36-km depth slice of the Northern 
Australia magnetotelluric electrical resistivity model 
(Duan et al. 2021). Unlike other mineral systems, in which 
deposits are associated with conductors (Heinson et al. 
2018 for IOCG; Kirkby et al. 2022 for orogenic gold), 
the siliciclastic-carbonate zinc-lead deposits appear to be 
associated with a resistive zone between two more con-
ductive zones. In the vicinity of Mount Isa, this resistivity 
anomaly trends north–south and broadly corresponds to 
the outcrop expression of the Kalkadoon-Leichhardt Belt, 
which is dominated by granites and gneisses. To the south 
of Mount Isa, this resistive zone trends toward the Cork 
Fault, although the lack of data in this region precludes 
determination of the southern extension of this zone. To 
the north of Mount Isa, the resistive corridor turns to the 

northwest and tracks toward the McArthur district, with 
all major siliciclastic-carbonate deposits, except Dugald 
River, located above the high resistivity anomaly.

To the east (northeast) and the west (southwest), the 
middle crust is significantly more conductive (Fig. 1e). 
Iron-oxide copper–gold and related epigenetic deposits 
of the Cloncurry district are spatially associated with the 
eastern high conductivity zone (Duan et al. 2021) as seen 
in other IOCG provinces such as Olympic Dam (Heinson 
et al. 2018). Siliciclastic-mafic zinc-lead deposits, such 
as Cannington and Pegmont, are also associated with this 
zone. The moderate to high conductive zone to the west 
of Mount Isa, however, is not associated with significant 
known mineral deposits of any type.

At the time of writing, insufficient magnetotelluric data 
have been collected in the Northern Cordillera to assess 
whether similar relationships between crustal electrical 
structure and the distribution of sediment-hosted zinc-lead 
deposits are present in that province.

Fig. 5   Conceptual plan, based 
on gravity data, showing 
the interpreted edges during 
the formation of the Calvert 
Superbasin. Location of major 
sediment-hosted zinc-lead and 
iron-oxide copper–gold deposits 
are shown
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Seismic reflection data

Figure 4a and b show interpreted sections from the North 
Australian Zinc Belt of transects 07GA-IG1 of the 2007 seis-
mic reflection survey (Korsch et al. 2012) and 94MTI-01 of 
the 1994 survey (Goleby et al. 1998). These transects were 
chosen as they illustrate the crustal architecture of the North 
Australian Zinc Belt and cross gradients in μ, LAB depth, 
and gravity and magnetotelluric data as described above 
(locations shown in Fig. 1c). Figure 4a and b have been 
extended downwards to show the base of the lithosphere 
using depth contours of the LAB (Hoggard et al. 2020).

As shown in Fig. 4a and b, the southern part of the North 
Australian Zinc Belt comprises three crustal blocks that are 
divided by two north–south-trending, crustal-scale struc-
tures, the west-dipping Gidyea Structure3 in the east and 
the steeply west-dipping Rufus Fault in the west. These 
structures are offset by the northwest-trending Quamby-
Fountain Range Fault (Fig. 5), which offsets the gravity high 
in the 30-km upward-continued gravity image (Fig. 1d), as 
described above. Both the Gidyea Structure and the Rufus 
Fault are associated with offsets of the Moho, and both are 
considered major crustal boundaries (Korsch and Doublier 
2016).

Figure 4c shows a Northern Cordillera cross-section from 
the western margin of the North American Craton in the east 
to Fraser River in the west (location shown in Fig. 3c) using 
the interpretation of Cook et al. (1992) for the composite 
Lithoprobe Northern Cordillera transect and the LAB depth 
model of Hoggard et al. (2020). Like the North Austral-
ian Zinc Belt transect, the Northern Cordillera section also 
indicates major crustal changes away from the margin of 
the North American Craton. The crust thins from east to 
west, accompanied by a major step in the Moho depth that 
also approximates the 170-km LAB depth contour. Similar 
to the North Australian Zinc Belt, the gradients seen in the 
lead isotope data and upward-continued gravity data, and 
distribution of shale-hosted zinc-lead deposits, appear to 
coincide with an edge, in this case the thinning of the North 
America Craton.

Discussion

Disparate datasets suggest that basin-hosted zinc-lead depos-
its in the North Australian Zinc Belt, the Northern Cordillera 
of western North America, and elsewhere in the world are 
associated with changes in the isotopic character, thickness, 

and physical properties (density and resistivity) of the crust 
and lithosphere. Data from the North Australian Zinc Belt 
suggest that these changes correspond to pre-existing bound-
aries between crustal blocks, whereas data from western 
North America suggest that deposits spatially coincide with 
the western boundary of the North American Craton.

North Australian Zinc Belt

The present-day architecture of the southern part of the 
North Australian Zinc Belt consists of four major crustal 
blocks separated by three major structures (Figs. 4a and b 
and 5). The Gidyea Structure juxtaposes thicker, conductive 
crust of the Mount Isa Province to the west with thinner, 
resistive crust of the Kowanyama/Numil Seismic Province 
to the east (Fig. 4a). Within the Mount Isa Province, the east-
dipping Pilgrim Fault juxtaposes conductive crust in the east 
from resistive crust to the west. Iron-oxide copper–gold and 
related deposits, and siliciclastic-mafic shale-hosted zinc-
lead deposits, are mostly restricted to conductive Mount Isa 
crust, whereas siliciclastic-carbonate shale-hosted zinc-lead 
deposits are localized in the resistive corridor to the west. 
The Rufus Fault juxtaposes Mount Isa crust with thinner 
Aileron Province crust to the west (Fig. 4a). Lithospheric 
thickness decreases from west to east, with the 170-km LAB 
contour between the surface projection of the Gidyea Struc-
ture and the Rufus Fault.

In detail, trends determined from isotopic and grav-
ity data, and the trend of the deposits themselves, cut at a 
broad scale the crustal-scale architecture described above. 
Moreover, the change in orientation to the northwest of the 
lead isotope, gravity, LAB-depth, and deposit trends and 
the resistive corridor are not obvious in the trends deter-
mined from surface geology and magnetic anomalies. In 
Fig. 5, we present a structural model that can account for 
the observed trends in multiple datasets and the distribu-
tion of mineral deposits using existing tectonic and basin 
architecture models for the North Australian Basin System 
(Neumann et al. 2009; Southgate et al. 2013; Gibson et al. 
2016, 2018, 2020). This interpretation assumes that initia-
tion of the Gidyea Structure and the Rufus Fault predated 
the formation of the North Australian Basin System and that 
their geometry strongly influenced the architecture of the 
North Australian Basin System. Gibson et al. (2008, 2012) 
argued that the evolution of the basin system between ca. 
1790 and ca. 1620 Ma was strongly influenced by east-
northeast–west-southwest- to northeast–southwest-directed 
extension associated with the rifting of Laurentia from the 
North Australian Craton. Korsch et al. (2012) argued that the 
Gidyea Structure formed before ca. 1850 Ma.

Our interpretation (Fig.  5) conceptually involves the 
formation of a basin during northeast-southwest extension 
and is based mostly on gravity data but uses all datasets 

3  Although Korsch et  al. (2012) interpreted the Gidyea feature as 
suture, we have used the non-genetic term “structure” to describe this 
feature defined by the seismic data.
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described herein. Three sets of faults controlled the geom-
etry of the basin: (1) newly formed, northwest-striking 
extensional faults; (2) north-trending trans-tensional faults 
that reactivated pre-existing crustal-scale faults such as 
the Gidyea Structure and Rufus Fault; and (3) deep-seated 
northeast-striking transfer faults. In this interpretation, the 
edges created by the extensional and trans-tensional faults 
controlled the sedimentary facies architecture of the North 
Australian Basin System (cf. Southgate et al. 2013; Fig. 2). 
Smaller-scale extensional and transfer faults, developed on 
this large-scale architecture, likely compartmentalized local 
sub-basin development (Gibson et al. 2016, 2018). The com-
plex, small-scale en echelon distribution pattern of lead iso-
tope data, reflected by μ values (Fig. 1b), likely reflects the 
development of such basins, and the re-entrants in gravity 
anomalies in the McArthur River and Walford Creek dis-
tricts (Fig. 1d) may similarly reflect sub-basin development.

Northern Cordillera

The present-day Northern Cordillera consists of a series of 
allochthonous and para-autochthonous terranes accreted 
onto the western margin of the North American Craton. 
This margin is irregular with many sub-basin embayments 
and basement-cored promontories controlled by local exten-
sional and transform faults. Changes in the width and thick-
ness of sedimentary rocks within these sub-basins reflect 
asymmetric extension (Thomas 1977; Lund 2008; Colpron 
and Nelson 2021). The broad-scale breaks in both upward-
continued gravity (Fig. 3c) and μ data (Fig. 3b) likely reflect 
this margin, but the complex, smaller-scale patterns in μ 
reflect the development of sub-basins along this margin.

Shale-hosted zinc-lead deposits in the Northern Cordil-
lera occur along linear trends that may be related to base-
ment structures that originated during rifting along the mar-
gin of the North American Craton (Lund 2008; McMechan 
2012). These structures influenced the geometry of the rift 
system and provided conduits for magmas and/or hydrother-
mal fluids. Northwest-striking asymmetric extensional seg-
ments and crustal thinning in the region are subdivided by 
northeast-striking transform and transfer segments.

Asymmetric extension produced margins, or edges, that 
mark changes in the character of both basin and basement. 
Lower-plate margins (i.e., Selwyn Basin and Mackenzie 
Platform in Yukon) are marked by the thinning of conti-
nental crust, subsidence (producing thick sag basins), and 
rotated crustal blocks. Upper-plate margins (i.e., south of the 

Laird line up to the Vulcan Low-St. Marie-Moyie transform 
zone; Fig. 1 of Lund et al. 2010) are characterized by limited 
crustal thinning and narrower continental margins (Thomas 
1993, 2006).

Most of the largest shale-hosted zinc-lead deposits in the 
Northern Cordillera are located in the segment associated 
with the lower plate margin, including those in the Selwyn 
Basin and Mackenzie Platform. Another group of important 
deposits, including Sullivan, is in southern British Columbia 
where the Vulcan Low-St. Marie-Moyie transform zone, a 
deep and old crustal structure within the North American 
Craton (Hoffman 1988), defines an upper-plate margin. 
Northeast-striking transform and transfer faults played 
important roles on sedimentation, intrusion, deformation, 
and mineralization (Lund et al. 2010), and many sediment-
hosted deposits are located along these faults (e.g., Sullivan 
located along the Vulcan Low-St. Marie-Moyie structure).

Like the North Australian Zinc Belt, major shale-hosted 
zinc-lead deposits appear to be associated with cratonic 
edges, determined both geologically and using lead isotope 
data, the depth of the LAB and gravity data. It also appears 
that local-scale features, such as basement structures, also 
were an important control on the distribution of the deposits. 
Similar to the North Australian Zinc Belt, some of the fine-
scale complexity in μ variations may reflect these structures.

Edges—fundamental controls on the distribution 
of shale‑hosted zinc‑lead deposits

Continental or cratonic edges, which can be outlined using 
a range of isotopic and geophysical datasets, appear to have 
exerted a large influence on the distribution of shale-hosted 
zinc-lead deposits. In the North Australian Zinc Belt, the 
older (ca. 1680 Ma) siliciclastic-mafic deposits occur out-
board of the platform edge in deep-water turbiditic suc-
cessions that formed during the early rift phase of basin 
development. In contrast, the younger (ca. 1665–1575 Ma), 
siliciclastic-carbonate deposits formed along or inboard of 
the edge as the basin continues to develop. This distribution 
of both deposit types is shown schematically in Fig. 2. In 
the Northern Cordillera, the relationship is broadly simi-
lar. Figure 6 presents an evolutionary model for the North 
Australian Zinc Belt illustrating how edges have controlled 
the metallogeny of this province. Figure 7 shows the gen-
eral relationships of deposits to edges and geochemical and 
geophysical proxies of edges.

Architecture of the North Australian Zinc Belt

Figure 6 shows conceptually how a basin-hosted tectono-
metallogenic system may have evolved, based on geometric 
relationships in the southern part of the North Australian 
Zinc Belt. In this model, the basement architecture of the 

Fig. 6   Conceptual model of shale-hosted zinc-lead mineral systems 
(based on the North Australia Zinc Belt in the vicinity of Mount Isa) 
showing relationship of these systems to crustal edges: a stage 1, 
preconditioning; b stage 2, initial rifting; c stage 3, formation of rift 
basin; and d formation of sag basin

◂
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zinc belt is inherited from pre-existing major crustal bounda-
ries and/or structures, including the Gidyea Structure and 
the Rufus and Pilgrim faults (Fig. 6a). These faults separate 
domains with different physical (i.e., density, seismic char-
acter, and resistivity structure) and isotopic properties, and, 
as such, represent the edges of major cratonic blocks that 
controlled later basin evolution and metallogenesis.

At ca. 1790 Ma, extension initiated, leading to deposi-
tion of the Leichhardt Superbasin and the basal part of the 
Calvert Superbasin over the following 140 Myr (Fig. 6b). 
Although shown simply as an extensional basin with edges 
defined by pre-existing boundary faults, in detail this early 
extension may have involved formation of core complexes 
and other more complex extensional geometries (e.g., Gib-
son et al. 2008). Rocks deposited at this time are mainly 
tholeiitic mafic volcanic rocks, lacustrine and shallow 
marine sandstone and other siliciclastic rocks, and minor 
carbonate rocks. This deposition continued to ca. 1680 Ma 
(Fig. 6c), at which time a deeper rift basin formed in the 
eastern part of the Calvert Superbasin, partly controlled by 
the early formed structural architecture, particularly the Pil-
grim Fault. This depositional system was dominated by tur-
biditic, siliciclastic rocks but included mafic volcanic rocks. 
Siliciclastic-mafic deposits such as Cannington formed at 
this time. The deposition of this rift basin corresponded in 

time with erosion and the development of the regional Gun 
unconformity in the western part of the North Australian 
Basin System (Neumann et al. 2009; Southgate et al. 2013).

Rifting ceased at ca. 1670–1665 Ma, and the basin system 
went into a sag phase (Fig. 6d). At this time, magmatism 
became very minor and sedimentation involved deposition 
of siliciclastic- and carbonate-dominated facies that changed 
laterally from the shelf outward and eastward into deeper-
water sediments (Southgate et al. 2013: Figs. 2 and 6d). The 
transition from the shelf into deeper water in this sedimen-
tary system was likely controlled by the edges formed during 
earlier extension. This transition from carbonate-rich suc-
cessions on the platform to calcareous/dolomitic shale suc-
cessions in deeper water was important for the development 
of mineral systems that form siliciclastic-carbonate shale-
hosted zinc-lead deposits (e.g., Emsbo et al. 2016). These 
deposits formed throughout much of the sedimentary sys-
tem, from carbonate-rich succession on the platform (e.g., 
McArthur River and Lady Loretta) to successions where car-
bonate is not as dominant (e.g., Mount Isa, Dugald River).

Although the model presented in Fig. 6 does not apply 
directly to the Northern Cordillera, the presence of an edge, 
as indicated in μ variations and variations in the LAB and 
in gravity data, had a strong control on the distribution of 
most shale-hosted zinc-lead deposits in this orogen (Fig. 3). 

Fig. 7   Schematic diagram showing the control of cratonic edges on 
the distribution of shale-hosted zinc deposits (modified after Huston 
et al. 2016). The relative resolution of different datasets discussed in 
the text in defining prospective basins and zones within basins for 
these deposits is shown. The diagram is generalized, and the char-
acteristics and utility of the datasets presented vary between basins. 
Other factors that should be considered in basin analysis include age, 
paleoenvironmental characteristics of the basin (e.g., paleolatitude 

and/or evidence of evaporites), tectonic triggers (e.g., out-of-area 
structural and/or tectonic events as indicated by bends in paleomag-
netic apparent polar wander paths or local structural events), the 
presence of and evidence for leaching of source rocks (e.g., mafic 
volcanic rocks and certain turbiditic sedimentary rocks), and the 
presence of trap rocks (mainly carbonaceous and dolomitic shale/silt-
stone, but in some cases, dolostone breccia)
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Moreover, the range in age of the deposits suggest that this 
margin was long-lived, with mineralizing events occurring 
at ca. 1475 Ma, ca. 560 Ma, ca. 520 Ma, ca. 440 Ma, and 
ca. 380–365 Ma.

Controls on siliciclastic‑mafic and siliciclastic‑carbonate 
shale‑hosted deposits

The spatial association of the Cannington deposit with 
amphibolite (Wright et al. 2017), interpreted as a mafic vol-
canic rock or sill, and the presence of mafic sills and dikes 
within the host Soldiers Cap Group (Derrick et al. 1976; 
Beardsmore et al. 1988; Gibson et al. 2018), indicates sig-
nificant coeval magmatism in a relatively deep rift basin. It 
is likely that the edges, as discussed above, controlled the 
development of this basin. Moreover, lithospheric thinning 
and mafic magmatism associated with rifting likely resulted 
in a high heat flow, which drove the circulation of relatively 
hot, reduced ore fluids that deposited metals in the shallow 
subsurface below the seafloor (Cooke et al. 2000; Huston 
et al. 2006; Wright et al. 2017). The metal source was likely 
mafic volcanic rocks or immature, turbiditic siliciclastic 
rocks within the rift basin.

In contrast, siliciclastic-carbonate zinc-lead deposits are 
thought to have formed from lower temperature, oxidized 
ore fluids (Cooke et al. 2000; Huston et al. 2006). Modeling 
by Hoggard et al. (2020) has suggested that thicker sub-
continental lithospheric mantle and crust insulates overly-
ing basins from hot asthenosphere mantle during mild to 
moderate rifting, resulting in lower thermal gradients within 
rift basins. In addition, thicker basins develop during rifting 
of the thick and buoyant lithosphere. These two factors are 
combined to produce voluminous sediments in basins having 
lower-temperature brines, which, if oxidized, can be highly 
efficient at transporting base metals (Cooke et al. 2000; Hus-
ton et al. 2016). Moreover, the mafic volcanic rocks deeper 
in the basin are ideal source rocks for zinc (Cooke et al. 
1998, 2000; Champion et al. 2020).

Cratonic edges juxtapose contrasting geological and tec-
tonic environments in space and time—environments that 
provide essential components (architecture, fluids, fluid 
pathways, source rocks, and traps) for both siliciclastic-mafic 
and siliciclastic-carbonate zinc mineral systems (Fig. 7). In 
this study, we have demonstrated that cratonic edges can be 
mapped using diverse datasets—lead isotopes, surface-wave 
tomography, gravity, seismic reflection, and magnetotelluric 
data—and that the locations of deposits correspond closely 
with the mapped edges. Moreover, these edges have per-
sisted and localized deposits for long periods of geological 
time. In the North Australian Zinc Belts, deposits formed 
along the edge for over 100 Myr, and in the Northern Cordil-
lera, deposits formed along the edge at ca. 1475 Ma and for 
over 100 Myr in the Paleozoic.

Although we emphasized the relationship of shale-hosted 
zinc-lead deposits with the large-scale edges (Fig. 7), in 
detail, the locations of many deposits seem to be controlled 
by second-order features along these large-scale bounda-
ries. In particular, the Walford Creek deposit and those in 
the McArthur district in the North Australian Zinc Belt are 
associated with embayments in the 30-km upward-contin-
ued gravity image (Fig. 1d); some deposits in the Northern 
Cordillera are associated with complexities in μ patterns 
(Fig. 3b). The McMillan Pass and Howards Pass districts 
are associated with an embayment in the gravity data (see 
also Hayward and Paradis 2021). These relationships suggest 
that anomalous, smaller-scale features in isotopic, gravity, 
and other datasets may be useful in defining more prospec-
tive zones along the larger-scale margins, although more 
detailed data are required to test this concept.

In the North Australian Zinc Belt and to a lesser extent in 
the Northern Cordillera, most deposits are localized where 
edges identified by all datasets coincide (Fig. 7). Outside of 
these areas of coincidence, major deposits are not known, 
although much of the area is covered by younger basins, at 
least in the North Australian Zinc Belt. Outside of the areas 
of known mineralization, locations of edges, as determined 
from the different datasets, diverge, which raises the ques-
tion: which dataset provides the best vector for targeting at 
different scales? More data and examples are required to 
resolve this question.

Lastly, evidence presented by Young (2004) for the Red 
Dog tectonic plate, which hosts the Red Dog district, and 
Hayward and Paradis (2021) for the Selwyn Basin, which 
hosts the MacMillan Pass and Howards Pass districts, sug-
gests that some basins that contain shale-hosted zinc depos-
its have been transported significant distances relative to 
basement by post-basin thrusting. This inferred post-ore 
tectonic displacement may account for local divergence of 
deposits from geophysical features identified in the base-
ment and underlying mantle (e.g., the LAB 170-km contour: 
Hayward and Paradis 2021) and the location of deposits. 
Although these deeper features provide criteria to identify 
mineralized provinces or basins at the global scale, more 
precise location information may be provided by datasets 
that directly map the characteristics of the host basin and 
are independent of post-mineral translation. These datasets 
include lead isotope data and more detailed gravity data.

Other criteria bearing on basin fertility

Global reviews on the characteristics and temporal dis-
tribution of basin-hosted zinc-lead deposits (Leach et al. 
2005, 2010; Wilkinson 2014) provide additional insights 
on important controls of these deposits. The oldest major 
basin-hosted zinc-lead deposit has an age of ca. 1800 Ma 
(Rampura-Agucha in India; Deb and Thorpe 2004) and was 
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succeeded by a major period of deposit formation, includ-
ing deposits from the North Australian Zinc Belt and the 
Northern Cordillera, at ca. 1800–1475 Ma. Formation of this 
cluster followed the development of an oxidized, upper layer 
of the ocean (Farquhar et al. 2010), which allowed, for the 
first time, the development of oxidized fluids essential for 
hydrothermal transport of metals in cool basins that formed 
over thickened lithosphere. Hence, a basin age younger than 
ca. 1800 Ma can be used as an additional criterion to define 
prospective basins.

Information on paleoenvironments at the time of miner-
alization can also refine the search space. Based on data for 
Phanerozoic deposits, Leach et al. (2005) suggested that vir-
tually all basin-hosted zinc-lead deposits formed within 30° 
(mostly 10–30°) from the equator, the equivalent of modern 
desert belts. Paleomagnetic data suggest that the North Aus-
tralian Zinc Belt was within 40° of the equator at the time of 
zinc-lead mineralization (Idnurm 2000). These data indicate 
that an arid littoral environment, critical for the formation 
of evaporative brines, is essential to form basin-hosted zinc-
lead deposits. In addition to paleomagnetic data, the pres-
ence of evaporites, evaporitic textures, evaporitic minerals, 
or mineral or textural pseudomorphs of evaporitic minerals 
within the host succession may also indicate favorable basins 
(Davidson and Dashlooty 1993; Czarnota et al. 2020).

Idnurm (2000) showed that many of the major siliciclas-
tic-carbonate zinc-lead deposits in the North Australian Zinc 
Belt are temporally associated with bends in the apparent 
polar wander path of the North Australian Craton. The 
1635–1645 Ma McArthur River and Lady Loretta deposits 
correspond in time not only to a major bend in this path, but 
also to the Liebig Orogeny (Scrimgeour et al. 2005) on the 
southern margin of the North Australian Craton and the Riv-
ersleigh Tectonic Event within the North Australian Basin 
System. Hence, the trigger of fluid flow in the North Aus-
tralian Zinc Belt may be regional or out-of-area structural-
tectonic events that are apparent in the paleomagnetic and/or 
structural history of the North Australian Craton. Similarly, 
the formation of the Sullivan deposit (~ 1475 Ma; Slack et al. 
2020) coincides in time with a major bend on the North 
American apparent polar wander path (Elston et al. 2002; 
Leach et al. 2010), and the Howards Pass (~ 442 Ma; Kelley 
et al. 2017) and Red Dog (~ 338 Ma; Morelli et al. 2004) 
deposits are broadly associated with flexures in the Paleo-
zoic North American polar wander path (Cocks and Tors-
vik 2011). This information may provide time constraints 
that can further refine the exploration search space in those 
regions.

Cooke et al. (1998) and Champion et al. (2020) have 
demonstrated that zinc and copper in many basaltic rocks 
from the Leichhardt and Calvert superbasins were depleted 
in association with regional chlorite-, K-feldspar-, and/or 
hematite-bearing alteration assemblages. Preliminary data 

suggest that copper leaching may be associated with demag-
netization of the basalt (Champion et al. 2020). The presence 
of such altered rocks is an additional characteristic of a fer-
tile basin. Insufficient data are available to test this concept 
in basins developed at various times along the margin of the 
North American Craton.

All significant siliciclastic-carbonate zinc-lead deposits 
in the North Australian Zinc Belt are hosted by carbona-
ceous and dolomitic siltstone lenses within carbonate- and/
or sandstone-rich successions (Large et al. 2005; Czarnota 
et al. 2020). These fine-grained rocks most likely formed 
in restricted, deeper-water depocenters and acted as redox 
traps to metals deposited from oxidized ore fluids, either 
epigenetically (Broadbent et al. 1998; Spinks et al. 2021), 
diagenetically in the shallow subsurface (Williams 1978; 
Kelley et al. 2004a,b; Gadd et al. 2016, 2017), or syngeneti-
cally on the sea floor (Carne and Cathro 1982; Goodfellow 
et al. 1993; Large et al. 2005). The presence of these fine-
grained rocks enhances the fertility of basins for siliciclastic-
carbonate zinc-lead deposits (although not for some other 
basin-hosted deposits); hence, the identification of spatial 
and temporal positions of these depocenters can further con-
strain the search space.

Our results indicate that other disparate datasets, includ-
ing stratigraphic, geochemical, and paleomagnetic data, may 
further refine spatial and/or temporal domains within basin 
systems that are most prospective. Moreover, it is possible 
that potential field, facies architecture, and, possibly, lead 
isotope data can be used to identify prospective domains at 
the district scale.

Conclusions

Although cartoon-like diagrams of basin-hosted mineral 
systems (e.g., Large 1980; Leach et al. 2005, 2010; Huston 
et al. 2016) have long suggested that these deposits form 
along the edges of continental blocks on passive margins, 
this study shows that data such as ore lead isotope analyses, 
surface-wave tomography converted to temperature, upward-
continued gravity, and, possibly, low- to mid-crustal mag-
netotelluric data can map the distribution of these cratonic 
margins (Fig. 7), even if the margins have been involved in 
later collisional events. The surface-wave tomography data, 
in particular, suggest that continental margins are associ-
ated with thicker lithosphere; seismic-reflection data fur-
ther suggest that the formation of passive margins localized 
along pre-existing crustal boundaries are more prospective 
for major and world-class shale-hosted zinc deposits. These 
features appear to be a first-order control on basins that are 
highly fertile for basin-hosted mineral deposits and can be 
used as exploration guides in area selection.
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Importantly, there are ways to screen more prospective 
from less prospective basins and to determine the most pro-
spective parts of prospective basins. Our results and previous 
data suggest that more prospective basins are (1) no older 
than ca. 1800 Ma, (2) formed within 30–40° of the equa-
tor, (3) overlap in age with bends in apparent polar wander 
paths, and (4) overlap in space with cratonic edges identified 
using variations in radiogenic isotopes and geophysical data 
(Fig. 7). The most prospective parts of basins are indicated 
by the location of cratonic edges, perturbations in these 
edges, sedimentary facies changes in time and in space, evi-
dence for the presence of evaporites in the sedimentary suc-
cession, and existence of extensive syn-basin faults.
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