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S U M M A R Y 

A key initial step in geophysical imaging is to devise an effective means of mapping the 
sensitivity of an observation to the model parameters, that is to compute its Fr échet deri v ati ves 
or sensitivity kernel. In the absence of any simplifying assumptions and when faced with a 
large number of free parameters, the adjoint method can be an ef fecti ve and ef ficient approach 

to calculating Fr échet deri v ati ves and requires just two numerical simulations. In the Glacial 
Isostatic Adjustment problem, these consist of a forward simulation driven by changes in ice 
mass and an adjoint simulation driven by fictitious loads that are applied at the observation 

sites. The theoretical basis for this approach has seen considerable dev elopment ov er the last 
decade. Here, we present the final elements needed to image 3-D mantle viscosity using a 
dataset of palaeo sea-level observations. Developments include the calculation of viscosity 

Fr échet deri v ati ves (i.e. sensiti vity kernels) for relati ve sea-le vel observ ations, a modification 

to the numerical implementation of the forward and adjoint problem that permits application 

to 3-D viscosity structure, and a recalibration of initial sea level that ensures the forward 

simulation honours present-day topography. In the process of addressing these items, we build 

intuition concerning how absolute sea-level and relativ e sea-lev el observations sense Earth’s 
viscosity structure and the physical processes involved. We discuss examples for potential 
observations located in the near field (Andenes, Norway), far field (Seychelles), and edge of 
the forebulge of the Laurentide ice sheet (Barbados). Examination of these kernels: (1) reveals 
why 1-D estimates of mantle viscosity from far-field relative sea-level observations can be 
biased; (2) hints at why an appropriate differential relativ e sea-lev el observation can provide 
a better constraint on local mantle viscosity and (3) demonstrates that sea-level observations 
hav e non-ne gligible 3-D sensitivity to deep mantle viscosity structure, which is counter to 

the intuition gained from 1-D radial viscosity Fr échet deri v ati ves. Finall y, we explore the 
influence of lateral variations in viscosity on relative sea-level observations in the Amundsen 

Sea Embayment and at Barbados. These predictions are based on a new global 3-D viscosity 

inference derived from the shear-wave speeds of GLAD-M25 and an inverse calibration scheme 
that ensures compatibility with certain fundamental geophysical observations. Use of the 
3-D viscosity inference leads to: (1) generally greater complexity within the kernel; (2) an 

increase in sensitivity and presence of shorter length-scale features within lower viscosity 

regions; (3) a zeroing out of the sensitivity kernel within high-viscosity regions where elastic 
deformation dominates and (4) shifting of sensitivity at a given depth towards distal regions 
of weaker viscosity. The tools and intuition built here provide the necessary framework to 

e xplore inv ersions for 3-D mantle viscosity based on palaeo sea-lev el data. 
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1  I N T RO D U C T I O N  

Geophysicists have gone to great lengths to image Earth’s interior 
using observations of seismic wave propagation (e.g. Nolet 2008 ; 
T romp 2019 ), gra vitational (e.g. Sj öberg & Bagherbandi 2017 ) and 
electromagnetic (e.g. Tikhonov 1950 ; Chave & Jones 2012 ) fields, 
as well as its response to deformation by both internal (e.g. Pollitz 
2001 ; Forte & Mitrovica 1996 ) and external forces (e.g. moon and 
sun; Nakada & ichiro Karato 2012 ; Lau et al. 2017 ). In doing so, 
they provide constraints on physical parameters that fundamentally 
control the behaviour of our planet across a range of spatial and 
temporal scales. With advancements in imaging techniques, com- 
putational resources, and observational data sets, imaging of these 
parameters has evolved from simple, spherically symmetric 1-D 

models to increasingly complex 3-D str uctural models. Never the- 
less, after nearly a century of research, imaging of Earth’s viscous 
structure has remained restricted to 1-D radial models (e.g. Haskell 
1935 ; Mitrovica 1996 ; Lau et al. 2016 ; Argus et al. 2021 ). These 
models generally exploit observations of Glacial Isostatic Adjust- 
ment (GIA), which is the viscoelastic deformation of the solid Earth 
as well as changes to its gravitational field and rotational axis in re- 
sponse to the evolving surface loads of the ice sheets and oceans. 
This process is most reliably constrained by observations of palaeo 
sea level, but the use of these observations to image 3-D man- 
tle viscosity has been hindered by a sparsity of data coverage, a 
lack of appropriate standardization procedures (Khan et al. 2019 ), 
and perhaps most importantly, the absence of an efficient inversion 
scheme. 

The influence of 3-D viscosity structure on GIA has been recog- 
nized for the past few decades (e.g. Gasperini et al. 1990 ; White- 
house 2018 ), but has seen an accelerated interest in recent years 
dri ven b y a desire to better understand the interactions between the 
solid Earth and the cryosphere (e.g. Kaufmann et al. 2005 ; Gomez 
et al. 2015 ; Whitehouse et al. 2019 ) or more broadly the hydro- 
sphere (e.g. Wu 2006 ; Austermann et al. 2013 ; Li et al. 2020 ; 
Bagge et al. 2021 ). The large range of viscosity heterogeneity 
( ∼10 18 −10 23 Pa ·s) imaged by regional GIA studies (e.g. Nield 
et al. 2014 , 2016 ; Barletta et al. 2018 ; Austermann et al. 2020 ) 
suggests that Earth’s viscous response occurs over timescales of 
years to thousands of years and at length scales of tens to many 
thousands of kilometres. Simulations show that such lateral varia- 
tions in viscosity can give rise to complex patterns of deformation 
that are not readily reproduced by a spherically symmetric vis- 
cosity model unless the ice history is substantially modified (e.g. 
Kaufmann et al. 2005 ; Klemann et al. 2007 ). Likewise, the 3-D 

viscosity structure of subduction zones can influence local rela- 
tive sea level and have a profound impact on its interpretation and 
hence any associated implications for ice history (Austermann et al. 
2013 ). Thus, there is a clear need for an accurate representation of 
Earth’s 3-D viscous structure in order to both improve GIA mod- 
els (their past and/or future predictions) and also to better under- 
stand how GIA observations probe Earth’s viscous structure. This 
need has created two main avenues for constraining Earth’s 3-D 

viscosity structure. Those studies that infer viscosity from other 
physical parameters, such as seismic wave speeds, and those that 
image viscosity directly from observations of viscous processes 
like GIA. Here, we utilize the former and will establish the latter in 
Lloyd et al. (in preparation), but note the two need not be mutually 
e xclusiv e. 

Inference-based approaches primarily convert seismic tomogra- 
phy models of shear-wave speed to viscosity by way of temperature 
using constitutive relationships and material parameters derived 
from laboratory experiments (e.g. Priestley & McKenzie 2013 ; Ya- 
mauchi & Takei 2016 ; Richards et al. 2020 ; Austermann et al. 
2021 ; Ivins et al. 2021 ; Paxman et al. 2023 ). Although such ap- 
proaches benefit from the high resolution and broad spatial coverage 
of seismic tomography, they also inherit the assumptions and un- 
certainties associated with the tomographic inv ersion, constitutiv e 
relationships and material parameters. Accounting for these effects 
is non-trivial and, in many instances, impractical, but can be com- 
bated with calibration schemes that identify inferences satisfying 
a number of well-known, independent solid Ear th obser vations (Li 
et al. 2018 ; Richards et al. 2020 ; Ivins et al. 2021 ). Nevertheless, 
assumptions concerning the physical state of the mantle and hence 
the origin of the seismic anomalies (e.g. temperature, composition, 
fluids, melt, etc.), as well as the deformation mechanisms that are 
acti v ated b y the transfer of seismic energy (e.g. dislocation creep, 
diffusion creep, g rain boundar y sliding, etc.), result in a wide range 
of plausible viscosity inferences (Ivins et al. 2021 ; Hazzard et al. 
2023 ). This aspect is further compounded due to the fact that GIA 

models include not only a solid Earth response (i.e. viscoelastic 
structure and rheology), but also an ice history that drives this re- 
sponse and hence, the two are strongly intertwined. Thus, there is 
still no guarantee that the resulting 3-D viscosity inference will 
provide a better fit to GIA observations due to errors in either com- 
ponent of the GIA model (e.g. Bagge et al. 2021 ). 

In this study, we begin exploring how and by which deforma- 
tional processes palaeo sea-level observations sense Earth’s viscos- 
ity structure, and how these sensitivities are coupled to the assumed 
viscosity structure and ice history. Despite the potential inaccuracy 
of combining reconstructed ice histories with an independent vis- 
cosity structure, we elect to use an inference of 3-D mantle viscosity 
in combination with a published ice history. For these purposes, we 
apply the adjoint method and build off the work of Al-Attar & Tromp 
( 2013 ) and Crawford et al. ( 2018 ). This effort ultimately lays the 
foundation for imaging 3-D mantle viscosity directly from GIA ob- 
servations and, to aid in its development, we will draw parallels to, 
and borrow from, seismology. We begin by briefly explaining why 
the adjoint method is an appropriate tool for this problem and pro- 
vide a summary of the necessary equations for defining and calculat- 
ing viscosity and initial sea-level Fr échet deri v ati ves (Section 2 ), a 
topic that is covered in more detail within Appendix A . In Section 3 
we expand the rate formulation of the forward and adjoint GIA prob- 
lem to consider relative sea-level observations and lateral variations 
in viscosity. Next, we discuss how the adjoint method can be used 
in a gradient based optimization scheme to recalibrate the initial sea 
level and ensure simulation compatibility with known present-day 
sea level (Section 4 ). Following this theoretical and methodological 
development, we discuss the forward and adjoint GIA simulation 
setup and a new inference of 3-D viscosity obtained by applying the 
approach of Richards et al. ( 2020 ) and Austermann et al. ( 2021 ) 
to the shear wave speeds of GLAD-M25 (Bozda ̆g et al. 2016 ; Lei 
et al. 2020 ; Section 5 ). Using these new tools, we demonstrate the 
initial sea-level recalibration and examine how the evolution of sea 
level is influenced by different viscosity models and ocean-loading 
histories (Sections 6.1 and 6.2 ). This demonstration is followed 
by a discussion of viscosity Fr échet deri v ati ves for observ ations 
of both absolute and relative sea level that focuses on identifying 
how physical processes (e.g. ocean siphoning and expulsion) are 
manifested, their big-picture implications, and how these two ob- 
serv ation types dif fer in their sensiti vity to viscosity (Section 6.3 ). 
Through these simple examples that adopt a 1-D radial viscosity 
model, we aim to begin building the necessary intuition and skills 
for both observational and theoretical scientists to read viscosity 
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r échet deri v ati ves, much like seismolo gists read seismo grams. We
hen examine the effect of a more realistic 3-D viscosity model
n the viscosity Fr échet deri v ati ves for observ ations of relati ve sea
e vel (Section 6.4 ). Finall y, the methods, results, and intuition built
erein are used to inform a companion paper (Lloyd et al. in prepa-
ation) that explores strategies for imaging 3-D mantle viscosity
ith synthetic palaeo sea-level data. 

 R E V I E W  O F  F R  ́E C H E T  D E R I VAT I V E S  

O R  T H E  G I A  P RO B L E M  

he first step towards data-driven inversions of GIA observations
s to determine how a potential observation changes in response to
 change in the rele v ant model parameters. This quantity is called
 Fr ́echet derivative and can be ef ficientl y calculated using the ad-
oint method. Al-Attar & Tromp ( 2013 ) and Crawford et al. ( 2018 )
eveloped the necessary mathematical theory linking a rate formu-
ation of the GIA problem to the adjoint method and in Appendix A
e provide a detailed re vie w of this work and its key assumptions.

n addition, Appendix A includes a table defining the variables of
he forward and adjoint GIA problem (Table A1 ). This re vie w is
ccompanied by a schematic overview of the adjoint method that
heds light on the deri v ation of the adjoint equations, including the
rigin of the fictitious loads and the time-reversed nature of the
imulation, as well as the deri v ation of Fr échet deri v ati ves for rele-
ant model parameters (e.g. viscosity). We encourage the interested
eader to consult Appendix A , but in the interests of brevity, restrict
urselves here to a conceptual description of Fr échet deri v ati ves and
 re vie w of the relationships required to calculate them with respect
o viscosity and initial sea level. 

.1 A conceptual description of Fr échet deri v ati ves 

or simplicity, let us first consider the viscosity, η, of Earth’s mantle
s the only free model parameter. For a given viscosity structure,
e can solve the forward GIA problem in order to obtain all pos-

ib le surface observab les and e v aluate a scalar-v alued functional,
 , which could be an observ ation (e.g. sea le vel, SL ) or a suitable
esigned misfit function. Thus, the value of F implicitly depends on
he viscosity, η, and can be written as F ( η). 

If a viscosity per turbation, δη, is applied to the adopted viscosity
tructure, we can to first-order write 

F ( η + δη) = F ( η) + 

∫ 
M 

K ln ηδ ln η dV + · · · , (1) 

here δ ln η = 

δη

η
, dV indicates a volume inte gral ov er the region,

 , and ··· indicates higher-order terms associated with the perturba-
ion δη. Note that the use of ln η as a model parameter rather than η is
 choice that is made for convenience. The function, K ln η, is known
s the Fr échet deri v ati ve of F with respect to ln η. Fur ther more, it
s also common and useful to rewrite eq. ( 1 ) as 

F = 

∫ 
M 

K ln ηδ ln η dV , (2) 

here it is understood that δF is the first-order change in the func-
ional F in response to a per turbation, δln η. Written in this form,
e can intuiti vel y understand the meaning of the Fr échet deri v ati ve

i.e. K ln η). In this e xample, positiv e (ne gativ e) values of K ln η indi-
ates that an increase in viscosity at those locations within the Earth
ill lead to an increase (decrease) in F at the observation site. The

orresponding size of the change in F depends on the magnitude
f K ln η. Thus, by plotting the Fr échet derivative, K ln η, for a given
unctional we can visualize, to first-order accuracy, how its value is
nfluenced by a change in viscosity. 

In the event that more than one model parameter is considered,
he Fr échet deri v ati ve of F with respect to each of the model pa-
ameters can be introduced. For example, in addition to viscosity,
e can include initial sea level, SL 0 , as a further model parame-

er (Section 4 ). In the forward GIA problem, the initial sea level
nters as an initial condition describing sea level (i.e. the negative
f topography) at the beginning of the simulation. Our functional,
 , then has an implicit dependence on both η and SL 0 and we can
eneralize eq. ( 1 ) to 

F ( η + δη, SL 0 + δSL 0 ) = F ( η, SL 0 ) + 

∫ 
M 

K ln ηδ ln η dV 

+ 

∫ 
∂M 

K SL 0 δSL 0 dS + · · · , (3) 

here K SL 0 is the Fr échet deri v ati ve of F with respect to the initial
ea level and dS indicates a surface integral over the region ∂M .
ecall that we write and retain only first-order terms, hence cross-

erms between δln η and δSL 0 are represented by ···. Nevertheless, it
s important to remember that both Fr échet deri v ati ves depend on the
nperturbed values of the model parameters (i.e. η and SL 0 ). Thus,
heir physical interpretation remains the same, but it is understood
hat the y e xpress the linearized sensitivities to one model parameter
hen the other parameters are held fixed. 

.2 Fr échet deri v ati ves in GIA 

 simple, albeit brute-force, approach to determining these Fr échet
eri v ati ves is the finite-difference method and it is this method that
as historically been used to compute kernels (Appendix C1 ). In this
pproach, the model parameters are first expressed using a finite-
imensional basis that is either deemed to be physically appropriate
r has been accepted for pragmatic reasons. Supposing that there are
 -degrees of freedom in this basis, a cost of n + 1 individual GIA
imulations are required to compute a single Fr échet deri v ati ve: one
imulation for the unperturbed problem and n additional simula-
ions that indi viduall y perturb each of the model parameters in turn
e.g. Mitrovica & Peltier 1991b ; Paulson et al. 2005 ; Wu 2006 ).
iven that n is large for GIA simulations that attempt to capture

ealistic variations in 3-D viscosity structure, that these simulations
re computationall y expensi ve (e.g. Latyche v et al. 2005 ), and that
ithin an iterative inversion, these Fr échet deri v ati ves need to be

omputed many times, it is clear that such an approach is impracti-
al. Instead, we follow the lead of seismic tomography (e.g. Tromp
t al. 2004 ; Fichtner et al. 2006 ) and use the adjoint method to
alculate Fr échet deri v ati ves with just two numerical simulations:
 forward simulation driven by the ice history and a time-reversed
djoint simulation driven by fictitious loads applied at the observa-
ion sites at appropriate times (Al-Attar & Tromp 2013 ; Crawford
t al. 2018 ). For completeness, we show in Appendix C2 that these
wo approaches obtain the same result and that the resulting Fr échet
eri v ati ves can be used to predict the change in the functional (e.g.
elative sea level) for a given model perturbation (e.g. viscosity). 

As shown in Appendix A2 , the Fr échet deri v ati ve for a given
odel parameter (e.g. viscosity) can be obtained by perturbing the
agrangian (eq. A15 ) with respect to that parameter. If we assume
 Maxwell rheology, then the Fr échet derivative with respect to ln η
akes the form 

K ln η = 

∫ t 1 

t 0 

1 

2 η
τ : τ † dt, (4) 
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where t 0 is the time corresponding to the beginning of the simula- 
tion and t 1 is its end. The : denotes the double-dot product between 
second-order deviatoric stress tensors from the forward, τ , and ad- 
joint, τ † , simulations. Although e v aluation of eq. ( 4 ) is straightfor- 
ward, it can become cumbersome in practice because the deviatoric 
stress at each time step of the forward simulation must be saved and 
therefore requires significant memory or disk space. 

In a similar manner, we can obtain the initial sea-level Fr échet 
deri v ati ve b y perturbing the Lagrangian (eq. A15 ) with respect to 
SL 0 , yielding 

K SL 0 = ρw gSL 

† 
0 

(
t † 1 

)
, (5) 

where ρw is the density of water, g is the magnitude of gravitational 
acceleration and SL 

† 
0 ( t 

† 
1 ) is the adjoint sea level at the final time 

step, t † 1 , of the adjoint simulation. Note that this time is equi v alent 
to the initial time, t 0 of the forward simulation and that both Fr échet 
deri v ati ve eqs ( 4 ) and ( 5 ) are equi v alent to those determined by
Al-Attar & Tromp ( 2013 ) and Crawford et al. ( 2018 ). 

Thus far, w e ha ve referred to K ∗ as the Fr échet deri v ati ve, where ∗
indicates an arbitrary model parameter. More commonl y, howe ver, 
when F is an observation, then K ∗ is called the sensitivity kernel , 
and when F is a misfit function, then K ∗ is termed the gradient or 
more formally the gradient of the misfit function with respect to 
the model parameter. We adopt this nomenclature throughout the 
remainder of this study, but fallback on Fr ́echet derivative when the 
nature of F is ambiguous. 

Finally, the units of the Fr échet deri v ati ve, K ∗, directly depend 
on the units of the functional, F , and they can be most easily ob- 
tained by examining the expression for the first-order change in the 
functional. To illustrate this aspect, let us allow F to be a sea-level 
observation in units of meters and consider the viscosity sensitiv- 
ity kernel , K ln η. By inspection of eq. ( 2 ), we see that the units of 
this sensitivity kernel must be m 

−2 . Similarly, if F is a L 2 misfit 
function with units of m 

2 and we now consider the gradient of the 
misfit function with respect to the initial sea level (eq. 5 ), then by 
inspection of the surface integral in eq. ( 3 ), we see that the units of 
the gradient are m 

−1 . These two examples are exactly the units of 
the viscosity sensitivity kernels discussed in Sections 6.3 and 6.4 
and the gradient used in the iterative inversion for initial sea level 
discussed in Sections 4 and 6.2 . Ho wever , these units are not easily 
obtained by inspection of eqs ( 4 ) and ( 5 ) because adjoint variables 
need not have the same units as their forw ard v ariable counterparts 
(e.g. τ and τ † ). Instead the adjoint variable units depend on those 
of the adjoint loads (Section 3.1 and Appendix A2 ) and ultimately 
on those of the functional, F . 

3  F U RT H E R  D E V E L O P M E N T  O F  T H E  

R A  T E  F O R M U L A  T I O N  O F  T H E  

F O RWA R D  A N D  A D J O I N T  G I A  

P RO B L E M  

The adjoint method has pre viousl y been used to calculate viscosity 
sensitivity kernels for sea-level observations assuming a 1-D radial 
viscosity structure (Crawford et al. 2018 ). In that study, only ob- 
servations of sea level at a given location and instant in time were 
considered and, for clarity, we refer to these as absolute sea-level 
observations. Here we make two developments. First, the derivation 
of the adjoint loads required by a fundamental observation of palaeo 
sea level (i.e. relative sea level; Section 3.1 ). These observations are 
al wa ys made and reported relative to present-day sea level (e.g. Khan 
et al. 2019 ), and, rather than existing in an absolute reference frame, 
are a measure of the change in sea level between the time of the sea- 
level indicator’s emplacement, t obs , and the present day, t p . We note 
that relative sea-level observations serve as the building blocks for 
related palaeo sea-le vel observ ations including the rate of sea-level 
change, the timing of sea-level highstands or transgressions (e.g. 
Nakada & Lambeck 1989 ), as well as relative sea-lev el curv es and 
spatiotemporal fields (e.g. Creel et al. 2022 ). Although understand- 
ing how these more complex observations sense Earth’s viscosity 
str ucture is impor tant, we focus here only on the more fundamental 
observations of absolute and relative sea level, their relationship, 
and the influence of 3-D viscosity structure on sensitivity kernels 
for relative sea-level observations. This leads to our second devel- 
opment, which is the inclusion of lateral viscosity heterogeneity in 
the forward and adjoint GIA simulations (Section 3.2 ). 

3.1 Adjoint loads for sea-level observations 

Thus far, we have not directly addressed the form of the fictitious 
adjoint loads that drive the adjoint GIA simulations and allow us 
to calculate sensitivity kernels for observations related to the solid 
Ear th, g ravity, and sea level. The adjoint loads associated with these 
observations, as demonstrated in Appendix A2 , are obtained by tak- 
ing the first order perturbation of the scalar-valued function, F ( u , φ, 
SL ), with respect to the forward variables and can be schematically 
written as 

δF = 

∫ t 1 

t 0 

∫ 
∂M 

(
ḣ u · δu + ḣ φδφ + ḣ SL δSL 

)
d S d t, (6) 

where ḣ u , ḣ φ and ḣ SL are the Fr échet deri v ati ve of F with respect 
to solid Earth displacement ( u ), gravitational potential perturbation 
( φ) and sea level ( SL ), respecti vel y. This sum is then integrated 
over the surface, ∂M , and over the duration of the simulation from 

t 0 to t 1 . Note that these Fr échet deri v ati ves are defined to be the 
time-deri v ati ve of some underlying functions, h u , h φ and h SL . This 
formulation is chosen to maximize the symmetry between the for- 
ward and adjoint problems. We now derive the adjoint loads for 
observations of absolute sea level and relative sea level. Although 
the former is presented by Crawford et al. ( 2018 ), we begin by 
rederiving it here in order to demonstrate how these two types of 
observations are related, but also how they differ in the information 
that they convey. 

Follo wing Cra wford et al. ( 2018 ), as well as our generalized 
discussion of the adjoint method (Appendix A2 ), we can determine 
the adjoint loads b y schematicall y perturbing the scalar-valued func- 
tional F with respect to the state variables U . For an observation of 
absolute sea level at a given location and time, SL ( x obs , t obs ), this 
leads to 

δF = 

∫ t 1 

t 0 

∫ 
∂M 

δSL ( x , t) δ( x − x obs ) δ( t − t obs ) d S d t (7) 

where δ( x − x obs ) and δ( t − t obs ) are Dirac delta functions centred at 
the observation site, x obs , and time, t obs . From this equation, we see 
that the necessary functions defining the Fr échet deri v ati ves are 

ḣ u = 0 , 

ḣ φ = 0 , 

ḣ SL = δ( x − x obs ) δ( t − t obs ) , (8) 

which are the values required by eqs ( A16 ) and ( A17 ) for an absolute 
sea-le vel observ ation at a gi ven point in space and time. 



Palaeo sea level sensitivity to 3D viscosity 1143 

 

n

w  

o  

w

δ

F  

a

h

 

l  

t  

c  

s  

i  

j  

a  

a  

t  

t  

3

3

T  

p  

p  

b  

o  

v  

i  

(  

r
 

f  

(  

o  

t  

t  

i  

a  

t  

v

w  

τ  

i  

i  

e
 

m

S  

t  

a  

e  

r  

e  

v  

l  

w  

e  

(  

(  

b
 

M  

c  

t  

t  

f  

g  

a  

E  

e  

a  

t  

f  

r  

(  

h

A

a

A

w  

s  

o  

s  

w  

f  

c  

n
c  

c  

c  

v  

t  

i  

e  

s  

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/236/2/1139/7440030 by R

.G
. M

enzies Library, Building #2, Australian N
ational U

niversity user on 04 January 2024
We now undertake a similar procedure, but begin with the defi-
ition of relative sea level 

RSL ( x obs , t obs ) = SL ( x obs , t obs ) − SL ( x obs , t p ) , (9) 

here t p is the present-day time, which is synonymous with t 1 in
ur study. Again, we perturb F with respect to the state variables U ,
hich for a relative sea-level observation results in 

F = 

∫ t 1 

t 0 

∫ 
∂M 

δSL ( x , t) 
[
δ( x − x obs ) δ( t − t obs ) 

−δ( x − x obs ) δ( t − t p ) 
]

d S d t (10) 

rom this equation, it readily follows that the necessary functions
re now 

ḣ u = 0 , 

ḣ φ = 0 , 
˙
 SL = δ( x − x obs ) δ( t − t obs ) − δ( x − x obs ) δ( t − t p ) . (11) 

Examining eq. ( 11 ), we see that it is composed of two fictitious
oads of equal magnitude and opposite sign that are applied at times
 obs and t p . By comparing it with eq. ( 8 ), we see that it fundamentally
onsists of two absolute sea-level adjoint loads. Therefore, the sen-
itivity kernels for relative sea-level observations can be obtained
n one of two ways: (1) by using both adjoint loads in a single ad-
oint simulation or (2) by using each adjoint load in an independent
djoint simulation and then taking the difference of the resulting
bsolute sea-le vel sensiti vity kernels [i.e. K SL ( x obs , t obs ) − K SL ( x obs ,
 p )]. This property of superposition is routinely exploited in seismic
omography and will be utilized in our companion paper to image
-D viscosity using palaeo sea-level observations. 

.2 Numerical implementation of 3-D viscosity 

he introduction of lateral viscosity heterogeneity adds some com-
lexity to solving the forward and adjoint GIA equations using a
seudo-spectral method, which was previously identified and solved
y Martinec ( 2000 ). This complexity occurs in the first integral term
n the right-hand side of eqs ( A2 ) and ( A17 ), which describes the
iscous response of the system. A brief re vie w of the numerical
mplementation of these equations as described by Crawford et al.
 2018 ) is provided in Appendix B and we will invoke aspects of this
e vie w in what follows. 

Our implementation of lateral viscosity heterogeneity within the
orward and adjoint GIA simulations is discussed in Crawford
 2019 ) and in essence follows Martinec ( 2000 ). Here, we focus
n the viscous response as it appears in the reduced weak form of
he forward GIA problem, eq. ( A2 ), but note that a similar integral
erm also appears in the adjoint GIA problem, eq. ( A17 ). These
nteg ral ter ms are identical up to the exchange of the forward and
djoint variables ( { m , d } ↔ 

{
m 

† , d 

† }; defined in Table A1 ), and
hus, are e v aluated in the same manner. When adopting a 1-D radial
iscosity structure, we are required to e v aluate 
∫ R ⊕

0 

∫ 
∂M r 

2 μ( r ) 

[
1 

τ ( r ) 
( d − m ) : ( d 

′ − m 

′ ) 
]

d S d r = (12) 

∫ R ⊕

0 

2 μ( r ) 

τ ( r ) 

∫ 
∂M r 

( d − m ) : d 

′ d S d r, 

here the shear modulus, μ( r ), and the Maxwell relaxation time ,
−1 ( r ), being functions of only radius, r , are brought outside of the

nner integral. Thus, the remaining terms within the inner angular
ntegral can be expanded using generalized spherical harmonics and
 v aluated using the appropriate orthogonality relations. 

In contrast, if viscosity varies laterally, we have to consider the
ore complicated expression 

∫ R ⊕

0 

∫ 
∂M r 

2 μ( r ) 

[
1 

τ ( r, θ, ϕ) 
( d − m ) : ( d 

′ − m 

′ ) 
]

d S d r = 

∫ R ⊕

0 
2 μ( r ) 

∫ 
∂M r 

1 

τ ( r, θ, ϕ) 
( d − m ) : d 

′ d S d r. (13) 

ince our numerical implementation only permits a 1-D radial elas-
ic and density structure, the shear modulus, μ( r ), must remain only
 function of r . This assumption is reasonable since 3-D elastic
f fects are generall y small and with the largest deviations occur-
ing in regions of large load changes (Mitrovica et al. 2011 ; Durkin
t al. 2019 ). Thus, in order to accommodate lateral variations in
iscosity the Maxwell relaxation time , τ ( r , θ , ϕ), now has an angu-
ar dependence indicated by { θ , ϕ} . To evaluate this integral term,
e use a pseudo-spectral approach (e.g. Fornberg 1998 ; Kendall
t al. 2005 ) that perfor ms cer tain operations in the spatial domain
e.g. multiplication) and other operations in the spectral domain
e.g. integration), while fast transformations are used to pass fields
etween these two domains. 

A consequence of eq. (13 ) and the lateral heterogeneity of the
axwell relaxation time , and hence viscosity, is that the spheroidal

omponents of the displacement no longer decouple from the
oroidal ones. This is because lateral variations in the Maxwell
ime generate toroidal components within the viscoelastic relaxation
orce applied at each time step. This situation is somewhat analo-
ous to the toroidal–poloidal coupling (note poloidal and spheroidal
re synonyms) that occurs within mantle in response to aspherical
ar th str ucture (e.g. For te & P eltier 1987 ). We note, ho wever , that
ven in a laterally homogeneous Earth, the adjoint GIA problem can
lso excite toroidal displacement through the presence of tangen-
ial surface tractions in the adjoint load, which for example occurs
or observations of horizontal solid Earth deformation. Thus, the
educed weak form of both the forward and adjoint GIA problems
eqs A2 and A17 ) may be schematically written for each spherical
ar monic deg ree- l as two coupled sets of linear equations 

 

s 
l ̇x 

s 
lm 

+ g lm 

( ̇x ) = b 

s 
lm 

, (14) 

nd 

 

t 
l ̇x 

t 
lm 

= b 

t 
lm 

, (15) 

here the superscripts s and t denote the spheroidal and toroidal
ubsystems, respecti vel y. Again focusing on the reduced weak form
f the forward GIA problem, eq. ( A2 ), the matrices A 

∗
l are con-

tructed from its first term, A , which is the Bilinear form associated
ith the elasto-gravitational forces (Al-Attar & Tromp 2013 ; Craw-

ord et al. 2018 ). The vector ẋ s lm 

contains the unknown spheroidal
omponents, 

{
U̇ lm 

, V̇ lm 

, ̇φlm 

}
, while the unknown toroidal compo-

ent, Ẇ lm 

, is contained within the vector ẋ t lm 

. Next, the vectors b 

∗
lm 

ontain the integral terms on the right-hand side of eq. ( A2 ) and
ontain the memory of the system and the forcing due to the ice-load
hange, all of which are known or readily calculated. Finally, the
ector, g lm 

( ̇x ) , originates from the second integral term of eq. ( A2 )
hat describes the radial forcing of the ocean and hence only arises
n the spheroidal subsystem. As discussed in Appendix B , we solve
q. ( 14 ) iterati vel y and eq. ( 15 ) directl y. In turn, solutions to these
ystems of equations can be mapped back into the more familiar
pherical coordinate system [see appendix B of Crawford et al.
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( 2018 ) or appendix C of Dahlen & Tromp ( 1999 )]. Thus, by adopt- 
ing these changes, we can now solve the forward and adjoint GIA 

problem subject to either a 3-D viscosity structure, surface tractions 
or both simultaneously at any given instant in time. 

4  R E C A L I B R AT I O N  O F  I N I T I A L  S E A  

L E V E L  U S I N G  G R A D I E N T - B A S E D  

O P T I M I Z AT I O N  

Predictions of past or future sea level and topography, regardless of 
the adopted Earth structure and ice history, should result in realistic 
topography that matches the observed present-day topography. This 
initial value problem is well-known within the GIA community and 
is commonly addressed by iteratively updating the prescribed ini- 
tial sea le vel b y subtracting the difference between the predicted 
and observed present-day sea level until the desired level of accu- 
racy is achieved (e.g. Kendall et al. 2005 ). Here, we take a different 
approach that uses the adjoint method in combination with gradient- 
based optimization (as suggested by Crawford et al. 2018 ). We will 
find this approach particularly useful in future work that simultane- 
ously updates multiple model parameters (e.g. mantle viscosity and 
initial sea level; Lloyd et al. in preparation). For now, we focus on 
the basics of recalibrating the initial sea level for any set of Earth 
and ice history models. 

In our approach, each iteration, i , begins with a forward GIA 

simulation that is initiated, in part, by the current estimate of initial 
sea level and is followed by calculating the misfit at the present day, 
t p , according to the function 

J 

i = 

1 

2 

∫ 
∂M 

[
SL 

i 
prd ( x , t p ) − SL obs ( x , t p ) 

]2 
dS. (16) 

Here, SL prd ( x , t p ) and SL obs ( x , t p ) are the present-day predicted 
and observed sea le vel, respecti vel y, at position x ∈ ∂M . We next 
calculate the adjoint loads in the same manner as in Section 3.1 , but 
now by perturbing eq. ( 16 ) with respect to SL prd , yielding 

ḣ SL = 

[
SL 

i 
prd ( x , t p ) − SL obs ( x , t p ) 

]
δ( t − t p ) , (17) 

where again, ḣ u and ḣ φ are zero. We see that the sea-level adjoint 
load described by eq. ( 17 ) is nearly identical to that of eq. ( 8 ), 
with the exception that it may have non-zero values globally and 
is weighted by the difference between the predicted and observed 
present-day sea level. It is this weighted adjoint load that drives the 
adjoint GIA simulation in the initial sea-level recalibration and, due 
to these w eights, w e now obtain the gradient of the misfit function 
with respect to the initial sea-level, D SL 0 J 

i , through eq. ( 5 ). Note 
that eq. ( 5 ) depends on the adjoint sea level at the final adjoint 
time, t † 1 , or equi v alentl y at the the initial time, t 0 , of the forward 
GIA simulation. Thus, for each iteration we must complete the full 
viscoelastic GIA simulation. This formulation is consistent with the 
equations of Crawford et al. ( 2018 ), but not their manuscript text 
where, due to a typographic error, it is stated that only the elastic 
adjoint problem needs to be solved. In the calculations of this study, 
we use the correct expression as revised above. 

With the gradient in hand, we can determine the search direc- 
tion and step length necessary to find a new initial sea level that 
minimizes the misfit function of eq. ( 16 ). Empirically, we have de- 
ter mined that g reater misfit reduction and a better overall match to 
the present-day sea level can be obtained through a strategy that 
starts with a low-pass filter of the gradient before retaining higher- 
deg ree infor mation in later iterations. Here, filtering is performed 
in the spherical harmonic domain by applying a one-sided Hanning 
taper as a function of degree- l , which has weights of 

w( l) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 , 0 ≤ l < l c 
1 
2 

[ 
1 − cos 

(
π l max −l 

l max −l c 

)] 
, l c ≤ l ≤ l max 

0 , otherwise 

, (18) 

where l max is the maximum spherical harmonic degree and l c is the 
cut-off deg ree (i.e. cor ner frequenc y). In the e xample of Section 6.2 , 
l max is 64 and we set l c to 60 when smoothing is applied to the 
gradient. We will discuss these choices further in that section. For 
now, we need only distinguish the smoothed or, in more general 
ter ms, preconditioned g radient as P D SL 0 J 

i , where P is an arbitrar y 
preconditioning operator. 

The gradient, D SL 0 J 

i , and preconditioned gradient, P D SL 0 J 

i , 
are used to determine the search direction using the method of 
steepest descent (Cauchy 1847 ). We have also explored using the 
conjugate gradient method instead (Polak & Ribiere 1969 ), but leave 
discussion of this algorithm to the companion paper. In the steepest 
descent method, the search direction, ψ 

i , is equal to the ne gativ e of 
the preconditioned gradient. Thus, updates to the initial sea level, 
SL 0 , can be obtained using 

S L 

i+ 1 
0 = S L 

i 
0 + αψ 

i , (19) 

where α is the step length, for which we seek the optimum value 
that minimizes the misfit in eq. ( 16 ). 

We determine the optimal step length for α by assuming that the 
misfit along the projection of the search direction forms a parabola, 
similar to the approach used by Tape et al. ( 2007 ) for seismic 
tomo graphy. Gi ven that at α = 0, we already have the misfit, J 

i , 
and can readily obtain the slope of this parabola by calculating the 
directional deri v ati ve along the search direction (i.e. 

〈
D SL 0 J 

i , ψ 

i 
〉
), 

it only remains to determine the misfit for a trial step length. Here, 
this length is taken to be twice the x -intercept of the line described 
by the misfit and slope at α = 0, which is 

αt = −2 
J 

i 〈
D SL 0 J 

i , ψ 

i 
〉 . (20) 

The resulting initial sea-level, SL 

i 
0 + αt ψ 

i , is then used to perform 

another forward GIA simulation and we again calculate the misfit, 
J 

i 
αt 

. With these pieces of information, we can now determine a 
unique quadratic curve and its minimum value 

α = 

〈
D SL 0 J 

i , ψ 

i 
〉
α2 

t 

2 
(
J 

i − J 

i 
αt 

+ 

〈
D SL 0 J 

i , ψ 

i 
〉
αt 

) , (21) 

which is a suitable step length that can be used to obtain a revised 
estimate for the initial sea level, SL 

i+ 1 
0 , using eq. ( 19 ). In the above 

procedure, it is critical to distinguish between the gradient, D SL 0 J 

i , 
and preconditioned gradient, P D SL 0 J 

i , since a failure to do so 
may cause the parabolic assumption to break down and result in an 
inef fecti ve estimate of the optimal step length. The degree to which 
this occurs depends on the extent that the gradient is modified 
b y preconditioning. Finall y, this procedure is iterati vel y repeated 
until the convergence criteria is met. For recalibration of initial 
sea level, we choose the convergence criteria to be | SL 

i 
prd ( x , t p ) −

SL obs ( x , t p ) | < 0 . 5 m ∀ x ∈ ∂M (i.e. the total difference between the
predicted and observed present day sea level is less than 50 cm), 
based on the GIA benchmark study of Martinec et al. ( 2018 ). 
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 F O RWA R D  A N D  A D J O I N T  G I A  

I M U L AT I O N  S E T U P  

hroughout this study, we perform forward and adjoint GIA sim-
lations at spherical harmonic degree 64 and for a duration of
6 kyr (i.e. 26 ka to 1950 CE) using a spatially filtered version
f the ICE6G ( VM5a ) ice history model (Fig. 1 ; Argus et al. 2014 ;
eltier et al. 2015 ). The initial sea level (i.e. topography) at 26 ka
s prescribed and is either SL 

0 
0 or SL 

7 
0 , which are detailed in Sec-

ions 6.1 and 6.2 . For the solid Earth structure, we use the 1-D elastic
nd density structure of PREM (Dziewonski & Anderson 1981 ) in
ombination with either a filtered and bounded 3-D viscosity struc-
ure (Fig. 2 ) or its 1-D radial representation (Section 5.1 ; Fig. S4 ).
ur 3-D viscosity structure is based on the shear-wave speed model
f GLAD-M25 (Bozda ̆g et al. 2016 ; Lei et al. 2020 ) and its creation
ill be discussed in detail in Section 5.1 . Nevertheless, a couple
f pertinent details are rele v ant to the setup of the forward and ad-
oint GIA simulations. For example, both viscosity models extend
o Earth’s surface and thus, our simulations do not formally in-
lude an elastic lithosphere. Instead the extent of the high-viscosity
egions in combination with the load change characteristics deter-
ines which regions will be dominated by elastic deformation. In

his manner, simulations containing lateral viscosity variations also
nclude effects due to lateral changes in lithospheric thickness. 

Given the low resolution of the forward and adjoint GIA simu-
ations in comparison to the resolution of the input fields (e.g. 3-D
iscosity structure, surface topography and ice thickness), we spa-
ially filter these data sets to avoid aliasing and minimize the Gibbs
henomenon due to truncation of the spherical harmonic series to
egree 64. This low-pass filtering is achie ved b y appl ying a one-
ided Hanning taper as a function of degree, l (eq. 18 ), to each of
he fields in the spectral domain. Unlike our previous application
f eq. ( 18 ), the cut-off degree l c is set equal to 0, such that degree
 (i.e. the spherical mean) is the only degree to retain its original
mplitude. 

As discussed in Appendix B , the simulations use an explicit time-
tepping scheme and this time step is approximately one half of the
mallest Maxwell relaxation time . Thus, for our 1-D viscosity struc-
ure, this time step is 50 yr, while for our unmodified 3-D viscosity
nference (Fig. S2 ) the required time step would be approximately
.05 yr. In the latter case, a single forward or adjoint simulation
n a single compute node using OpenMP would take approximately
wo weeks and require more than a terabyte of memory to store the
eeded forward variables for the viscosity kernel calculation (eq. 4 ).
his requirement exceeds our computational resources and, due to

he exploratory nature of this study, we instead choose to limit the
inimum viscosity to 2 × 10 19 Pa ·s. With this modification, the

ime step becomes 1 yr and the run time is ∼18 hr , ho wever cal-
ulating the viscosity sensitivity kernels (eq. 4 ) remains memory
ntensive. Thus, w e sa ve the deviatoric stress tensor every 50 yr,
hich we find to be sufficient when numerically integrating eq. ( 4 )
sing the rectangle rule. 

.1 An inference of 3-D mantle viscosity from 

LAD-M25 

e construct a new inference of 3-D mantle viscosity based on a
imilar approach to Austermann et al. ( 2021 ) and using the Voigt av-
rage shear-wave speeds of GLAD-M25 (Fig. 1; Bozda ̆g et al. 2016 ;
ei et al. 2020 ). GLAD-M25 is the second generation of a global
djoint tomography model (Bozda ̆g et al. 2016 ), whose starting
oint consists of the S362ANI seismic model of Kustowski et al.
 2008 ) combined with cr ustal str ucture from CRUST2.0 (Bassin
000 ). Its construction over the course of 25 iterations minimizes
he phase misfit of three-component body and surface waves (peri-
ds of 17–25 and 40–250 s, respecti vel y), as well as reflections and
ver tones, from 1480 ear thquakes. This minimization is achieved
sing gradient-based optimization in combination with the adjoint
ethod and the computational package SPECFEM3D GLOBE (Ko-
atitsch & Tromp 2002a , b ), which allows for accurate and efficient

alculation of both synthetic three-component seismograms and the
radient of the misfit function with respect to the model parameters.
lthough a formal assessment of the model’s resolution remains a

hallenge, point-spread function tests (Fichtner & Trampert 2011 )
s well as comparisons with other global and regional tomogra-
hy models suggest that GLAD-M25 is slowly beginning to close the
ap between global and regional studies in densely sampled areas
Lei et al. 2020 ). Nevertheless, we acknowledge that the absence
f surface waves at periods less than 40 s suggests that the upper-
ost mantle may be less well resolved than in other global upper
antle tomography models (e.g. Schaeffer & Lebedev 2013 ). We

ote, ho wever , that no current tomography model has the required
lobal coverage and the required resolution to capture the shallow
ne-scale structure that will be important for GIA modelling. 
Our inference of 3-D mantle viscosity consists of three com-

onents: (1) an inverse calibration scheme for the upper mantle
Richards et al. 2020 ), (2) a traditional inference for the transition
one and lower mantle (Austermann et al. 2021 ) and (3) a merging
f the two domains, which includes near-surface corrections and
dditional rheological constraints. In all instances, we relate shear-
ave speed and attenuation to steady-state diffusion creep viscosity
r viscosity perturbations b y w ay of temperature. In so doing, we
ccount for both linear anharmonic (K umazaw a & Anderson 1969 )
nd non-linear anelastic (Cammarano et al. 2003 ; Karato 1993 ) ef-
ects, with the latter being more pronounced in warm regions where
emperatures approach the solidus. Failure to account for anelastic-
ty can lead to overestimates of absolute mantle temperatures and, by
xtension, underestimates of absolute mantle viscosity by an order
f magnitude (Austermann et al. 2021 ). Furthermore, we assume
hat shear-wave speed variations relative to a reference model are
ue to temperature alone. Although this assumption is incorrect, it is
ommon (e.g. Cammarano et al. 2003 ; Priestley & McKenzie 2006 ,
013 ; Richards et al. 2020 ) and perhaps reasonable to assume that
emperature effects dominate at global scales given uncertainties
n material properties of the mantle (e.g. composition, grain size,
nd melt fraction; Schutt & Lesher 2006 ; Connolly & Khan 2016 ;
annberg et al. 2017 ; Debayle et al. 2020 )) and the rheological
echanisms controlling anelasticity (Jackson & Faul 2010 ; Ya-
auchi & Takei 2016 ). Equally important uncertainties arise from

he tomographic models, whose imaged wave speeds are influenced
y the inverse problem setup (e.g. choice of parametrization, reg-
larization, and simplifying assumptions), the seismic phases of
nterest and their sensitivity to Earth structure, as well as the spatial
nd temporal distribution of sources (e.g. noise, earthquakes, etc.)
nd seismic stations. To manage and minimize these uncertainties,
t least for the upper mantle, we use the approach of Richards et al.
 2020 ). 

The inverse calibration scheme of Richards et al. ( 2020 ) is rooted
n the experimentally derived anelastic parametrization of Yamauchi
 Takei ( 2016 ), which includes the effect of pre-melting (Takei et al.

014 ). It also follows the methodological philosophy of Priestley
 McKenzie ( 2013 ) that any mapping of one mantle parameter

o another should satisfy a range of average mantle properties for
hich there exists independent constraints. Thus, given a suite of

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad455#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad455#supplementary-data
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Figure 1. Ice thickness changes. Maps of low-pass filtered ice-thickness change based on the ICE6G ( VM5a ) ice-history model (Argus et al. 2014 ; Peltier et al. 
2015 ) between (a) 26–0 ka, (b) 26–10 ka, (c) 10–0 ka, (d) 26–2.5 ka and (e) 2.5–0 ka. Panels (a), (b) and (c) are most appropriate for understanding the load 
changes associated with absolute sea-level observations at 10 and 0 ka and the relati ve sea-le vel spanning 10–0 ka (Sections 6.3 and 6.4 ). Likewise, panels (a), 
(d) and (e) are most appropriate for understanding the load changes associated with absolute sea-le vel observ ations at 2.2 and 0 ka and the relative sea-level 
spanning 2.2–0 ka (Section 6.4 ). 

Figure 2. Filtered and bounded 3-D viscosity structure. Depth slices through the filtered and bounded version of our inferred 3-D viscosity model (the 
unmodified version is shown in Fig. S2 ). Viscosity anomalies at each depth are relative to the 1-D radial model described at the end of Section 5.1 and shown in 
Fig. S4 . This 3-D model is used in the forward and adjoint simulations of Section 6.2 to determine a target present-day sea level for recalibration of the initial 
sea level. It is also used in Section 6.4 to explore the effect of 3-D structure on viscosity sensitivity kernels. 
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experimentally determined parameters (Table 1 ) that capture the 
dependence of anelasticity on frequency, depth and homologous 
temperature, we can determine a set of globally averaged mantle 
material properties that satisfy existing independent constraints. An 
important advantage of this calibration procedure is that it ensures 
the non-linear decrease in shear-wave speeds and attenuation near 
the solidus are faithfully reproduced, regardless of the assumed rel- 
ative contribution of temperature, composition, grain size and melt 
fraction to the observed seismic parameters. Since the non-linear 
behaviour is ultimately controlled by the diffusion creep viscosity 

art/ggad455_f1.eps
art/ggad455_f2.eps
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad455#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad455#supplementary-data
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Table 1. Experimentally determined anelasticity parameters (left) from Yamauchi & Takei ( 2016 ) and the globally averaged mantle material properties (right) 
determined by the inverse calibration scheme of Richards et al. ( 2020 ). 

Experimentally determined parameters Globally averaged mantle material properties 
Variable Value Variable Value 

A B 0.664 μ0 80.82 GPa 
αB 0.38 ∂μ

∂T −0.02 GPa ◦C 

−1 

τ ′ 
P 6 × 10 −5 ∂μ

∂ P 2.292 
β( ϕ) ∼0 log 10 ηr 23.301 [log 10 (Pa ·s)] 
� poro ( ϕ) ∼0 E a 545 kJ mol −1 

γ 5 V a 9.633 × 10 −7 m 

3 mol −1 

T ′ η 0.94 ∂T s 
∂z 0.8634 ◦C km 

−1 

λϕ ∼0 
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nd directly constrained by the seismological observations, our
teady-state viscosity estimates are remarkably robust to uncer-
ainty in these thermodynamic variables (see Text S1 in Hazzard
t al. 2023 ). 

In our mapping, as in Richards et al. ( 2020 ), we make use of
our independent constraints and e v aluate each with an L2 misfit
unction that is weighted by uncertainties and is appropriately nor-
alized by the sample size. The observations consist of shear-wave

peeds from oceanic regions of GLAD-M25 that are stacked with
espect to lithospheric age and depth relative to sea level, as well
s inferences of mantle properties (temperature, attenuation and
ulk viscosity). Sampling of these observations is performed in an
dentical manner to Richards et al. ( 2020 ) unless otherwise stated.
he first constraint compares the oceanic stack of shear-wave speed

o those predicted by the plate-cooling model of Richards et al.
 2018 ), in which we assume an ambient potential temperature of
333 ◦C and an equilibrium plate thickness of 133 km. Secondly,
e require the inferred temperature between 225 and 400 km depth
eneath oceanic regions to be isentropic on average (i.e. both adia-
atic and reversible) and to follow the 1333 ◦C isentrope (Shorttle
t al. 2014 ). Thirdly, the inferred average attenuation structure ob-
ained from the relationships of Yamauchi & Takei ( 2016 ) must
onverge to the 1-D attenuation structure of QL6 (Durek & Ekstr öm
996 ), the same profile used in the construction of GLAD-M25 , be-
eath old oceanic lithosphere. Finally, we require that the average
f the inferred steady-state diffusion creep viscosity between 225
nd 400 km depth be approximately 3 × 10 20 Pa ·s (Lau et al.
016 ). These four misfit functions are subsequently combined us-
ng weighting factors of 10, 1, 2 and 2, respecti vel y, in order to
alculate total misfit. 

To determine the optimal set of globally averaged mantle mate-
ial properties that satisfy the above constraints, we initially perform
 coarse parameter sweep in order to bound the global minimum.
he parameter set with the lowest misfit value is then chosen as the
tarting point in a conjugate gradient scheme (P o well 1964 ; Press
t al. 1986 ) that seeks to further converge on the global minimum.
he resulting parameters can be found in Table 1 and are used to
onvert upper mantle shear-wave speeds of GLAD-M25 into temper-
ture and absolute steady-state diffusion creep viscosity down to
00 km depth. 

At greater depths, we lack sufficient observational constraints
o apply the inverse calibration scheme of Richards et al. ( 2020 )
nd must fall back on more traditional approaches. Here, we follow
ustermann et al. ( 2021 ) and convert shear-wave speed variations

elative to the 1-D radial average of GLAD-M25 into temperature
ariations about a quasi-steady state mantle geotherm (Schuberth
t al. 2009 ). The anharmonic component of this conversion assumes
 pyrolitic mantle composition and makes use of the Perple X
ibbs free-energy minimization softw are (Connoll y 2005 ) along
ith the thermodynamic database of Stixrude & Lithgow-Bertelloni

 2011 ). An anelastic correction is made based on the 1-D attenuation
odel Q5 , associated relationships from Cammarano et al. ( 2003 ),

nd a mantle solidus from Andrault et al. ( 2011 ). Finally, these
emperature variations are mapped to viscosity variations following
teinberger & Calderwood ( 2006 ). 
We now merge these two domains in order to produce a spherical

-D viscosity model of the mantle and crust that has a high-viscosity
id, an average viscosity of 5 × 10 20 Pa ·s in the sublithospheric
pper mantle, and an average viscosity of 5 × 10 21 Pa ·s in the lower
antle. In doing so, we address the fact that GLAD-M25 ’s topology

eometrically includes ellipticity, surface topography and internal
eismic discontinuities (e.g. the Moho; Bozda ̆g et al. 2016 ; Lei et al.
020 ), as well as the fact that updates to the model may cause crust
r mantle wave speeds to exceed the extent of the a priori prescribed
nd fixed Moho. To deter mine cr ustal viscosities we first identify
he extent of a a crust-like region. For the upper bound we ignore
he topography and bathymetry present in GLAD-M25 and define the
pper surface to coincide with present-day sea level. Meanwhile,
he depth of the crust-like region is taken to be either the Moho
rescribed by the starting model of GLAD-M25 (i.e. CRUST2.0;
assin 2000 ) or the depth of the minimum temperature inferred by

he inverse calibration scheme. Next, we identify the lithosphere–
sthenosphere boundary (LAB) as the 1175 ◦C isotherm, similar
o Austermann et al. ( 2021 ), and find that the spherical average
epth of this boundary is ∼100 km. Furthermore, the volumetrically
veraged viscosity of the mantle lithosphere is ∼1.5 × 10 26 Pa ·s
nd it is this value that we assign to the crust-like region. Thus,
he volumetric average of the entire lithosphere remains unchanged,
ith constant viscosities within the crust and laterall y v ariable ones
ithin the lithospheric mantle. 
At 400 km depth, we transition from using the inverse calibration

cheme of Richards et al. ( 2020 ) to the more traditional approach of
ustermann et al. ( 2020 ), which does not involve a calibration. At

his depth, we average the two viscosity inferences in logarithmic
pace assuming a reference viscosity of 5 × 10 20 Pa ·s (or ∼20.699
n logarithmic space) for the traditional approach. It is this reference
iscosity that we enforce as the volumetric average of the sublitho-
pheric upper mantle extending from the LAB down to 670 km
epth, similar to Austermann et al. ( 2021 ). Ho wever , unlike in their
-D viscosity inference, we impose this condition dif ferentl y. We
alculate the volumetric average viscosity of the sublithospheric up-
er mantle ( ∼20.914 in logarithmic space) and apply a uniform shift
f −0.215 in log space in order to satisfy this constraint. Finally,
ithin the lower mantle (i.e. 670–2891 km depth), absolute viscos-

ty is determined assuming a reference viscosity of 5 × 10 21 Pa ·s,
hich is also the adopted average viscosity of the lower mantle. 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad455#supplementary-data
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The resulting 3-D viscosity inference is shown in Fig. S2 and the 
entire model may be found in the Supporting Information. Like- 
wise, estimates of LAB depth based on the 1175 ◦C isotherm are 
provided and shown in Fig. S3 . This separation is done to avoid con- 
fusion with the filtered and bounded 3-D viscosity model (Fig. 2 ) 
that is derived from this initial inference and used in the forward 
and adjoint GIA simulations. Our treatment of the mantle and crust 
as entirely viscoelastic is a departure from traditional GIA models 
that invoke an elastic lid (which implies knowledge of the ef fecti ve 
elastic thickness of the lithosphere). Constraining this thickness 
remains challenging and its meaning varies across geophysical dis- 
ciplines (e.g. Lau et al. 2020 ). Instead, we believe a more elegant 
approach is to avoid defining the elastic thickness and instead allow 

the degree of elastic versus viscous deformation to be determined 
by material properties interacting with the geometry and timescale 
of surface load changes. 

As a final step, we construct a comparable 1-D radial viscosity 
model based on this 3-D viscosity inference (Fig. S4 ). This model 
consists of a 100-km-thick, high-viscosity ( ∼1.5 × 10 26 Pa ·s) lid, 
a sublithospheric upper mantle (100–670 km depth) viscosity of 5 
× 10 20 Pa ·s, and a lower mantle (670–2891 km depth) viscosity of 
5 × 10 21 Pa ·s. We use this model in all forward and adjoint GIA 

simulations herein that adopt a 1-D viscosity model. 

6  R E S U LT S  A N D  D I S C U S S I O N  

6.1 Forward simulations of sea-level change 

The total sea-level change from 26 ka to 1950 CE predicted by for- 
ward GIA simulations and driven by the filtered ICE6G ( VM5a ) ice 
history model (Section 5 ) is shown in Fig. 3 . This figure includes 
results that adopt both the filtered and bounded 3-D viscosity model 
(Fig. 2 ) and its 1-D radial representation (Section 5.1 ). As expected, 
the largest total sea-level change occurs near the former Laurentide 
and Fennoscandian ice sheets, in which peak sea-level fall reaches 
approximately −800 m over the course of 26 kyr for the 1-D vis- 
cosity model (Fig. 3 b). In contrast, adoption of our 3-D viscosity 
model results in peak sea-level fall of approximately −700 m and 
approximately −500 m within the footprint of the Laurentide and 
Fennoscandian ice sheets, respecti vel y (Fig. 3 a). The dif ference in 
total sea-level change in these two simulations is shown in Fig. 3 (c) 
and is equi v alent to the difference in their final sea level since they 
use the same value of initial sea level [obtained from the filtered 
ICE6G ( VM5a ) ice history]. Thus, for later clarity, we refer to the 
results in Fig. 3 (c) as the difference in final sea level . 

In the near field, which includes the ice sheets and their forebulge, 
we observe higher sea level for the 3-D viscosity model within the 
footprint of the former Laurentide and Fennoscandian ice sheets, 
as well as within coastal regions of East Antarctica and Greenland 
(Fig. 3 c). As e xpected, sea lev el is generally lower at the peripheries 
of these regions within the forebulge. In contrast, we find lower sea 
level within West Antarctica and central Greenland, and where a 
clear forebulge exists, higher sea level is observed. These differ- 
ences in final sea level in part reflect the relative stiffness of our 
3-D viscosity structure with respect to its 1-D radial representation. 
In our 3-D viscosity model, the Canadian Shield, Fennoscandian 
Shield, Greenland and East Antarctic Shield are all underlain by 
an overall stiffer mantle, which reflects their thick, cold, in some 
cases cratonic lithosphere and their long-term tectonic stability. As 
a result of stiffer mantle, these regions experience less solid Earth 
deformation in response to ice-mass change. Thus, areas of net ice- 
mass loss experience lower uplift and subsidence, leading to higher 
sea level within the footprint of the ice sheets and lower sea level 
within the forebulge. Within areas of net ice-mass gain (e.g. central 
Greenland) deformation is similarly muted, but the direction of de- 
formation and by e xtension sea-lev el change is opposite. In contrast, 
the mantle underlying West Antarctica is weaker in our 3-D viscos- 
ity structure relative to its 1-D radial representation, which reflects 
the warmer mantle and thinner lithosphere that are characteristic 
of tectonicall y acti v e re gions. When these re gions e xperience net 
ice mass loss greater solid Earth uplift (i.e. lower sea level) occurs 
directly beneath the load change, while greater solid Earth subsi- 
dence (i.e. higher sea level) is found at the peripheries. Finally, we 
note that a similar pattern is observed in Patagonia and reflects re- 
gional ice-mass loss and a weaker mantle, although this feature is 
of insufficient amplitude to be visible in Fig. 3 (c). 

In the far field (i.e. beyond the extent of forebulges), sea level 
is generally higher by up to 10 m in the open ocean for the 3-D 

viscosity model relative to its 1-D radial representation. As for the 
near field, final sea-le vel dif ferences in the far field arise, in part, due 
to the difference in viscous structure and, by extension, lithospheric 
thickness between the two viscosity models. Ho wever , the strength 
of ocean siphoning and expulsion (i.e. sea floor subsidence and 
uplift, respecti vel y) in the near field also modulates the far field sea 
lev el. Meanwhile, a more comple x pattern with a similar magnitude 
is observed along coastal regions and often includes a switch in 
polarity across the coastline that reflects variations in the magnitude 
of continental levering. A detailed examination of the influence of 
3-D structure on continental levering is beyond the scope of this 
work and we instead refer the reader to Austermann et al. ( 2021 ). 

Although much of the difference in final sea level shown in 
Fig. 3 (c) is due to the viscosity contrast between our 3-D viscosity 
model and its 1-D radial representation, a component is also due 
to our assumption that the initial sea level is the same for both 
simulations. As a result of their different viscoelastic properties, 
some regions, particularly marine-based sectors of the ice sheets, 
are subject to alternative histories of ocean loading and unloading, 
solid Earth deformation, and gravitational changes. Quantifying 
this contribution requires determination of an initial sea level for 
each individual simulation that will yield a consistent sea-level (i.e. 
topography) prediction at the final time step. Thus, we now turn our 
attention to recalibration of initial sea level. 

6.2 An example of the initial sea-level recalibration 

Following the procedure laid out in Section 4 , we perform an initial 
sea-level recalibration using a synthetic example. We have chosen 
to adopt the final sea level predicted by the forward GIA simulation 
using the filtered and truncated 3-D viscosity model as the observed 
present-day sea level. We then iteratively invert for the initial sea 
level that is required to match this ‘observation’ for simulations 
that instead use the 1-D viscosity model. We find that this inversion 
conv erges rapidly ov er the course of 4–5 iterations, during which 
the greatest misfit reduction ( ≥90 per cent) occurs in the first it- 
eration (Fig. 4 a). Neglecting to implement a suitable smoothing 
strate gy, howev er, leads the inv ersion to become easily trapped in 
local minima that are related to instabilities in the vicinity of the 
former marine ice sheets. For such an inversion without smoothing, 
this behaviour results in differences between predicted and observed 
final sea level of ±25 m to the north of Fennoscandia as well as 
±10 m in Hudson Bay and the Nor thwester n Passages of North 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad455#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad455#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad455#supplementary-data
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Figure 3. Predicted sea-level change from 26 ka to 1950 CE for different viscosity structures under the assumption of a fixed initial sea level. (a) Results 
that adopt the filtered and bounded 3-D viscosity structure (Fig. 2 ) or (b) the 1-D viscosity structure (Section 5.1 ). In these two maps blue colours indicate 
sea-level rise and green colours indicate sea-level fall. (c) The total sea-level change difference at 1950 CE between models that adopt the 3-D and 1-D viscosity 
str uctures. Here, blue (g reen) colours indicate g reater (lesser) sea le vel relati ve to the 1-D simulation results. Finally, the red dashed line shows the location of 
the inset map. 
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merica (Fig. 5 c). These instabilities dominate the highest degrees
f our spherical harmonic basis functions and likely arise from their
runcation above l max = 64. 

In order to avoid these numerical instabilities, as well as to im-
rove the fit of the predicted and observed present-day sea level,
e use the smoothing described in Section 4 within a two stage

nversion procedure. In the first stage, we apply a one-sided Han-
ing taper to the initial sea-level kernel (eq. 5 ) and set l c equal to
0 (eq. 18 ). As in the example without smoothing, the inversion
nitially converges rapidly and achieves a similar degree of misfit
eduction over 4–5 iterations (Fig. 4 a), but now the maximum dif-
erence between the predicted and observed present-day sea level
s reduced to ∼1.5 m (Fig. 4 b). Fig. 6 (c) shows that there remains
ome ringing artefacts radiating from points of highly localized dis-
repancy that have peak amplitudes of ∼1 m and are associated with
he truncation of the spherical harmonic transformation. To further
educe these discrepancies and artefacts, we perform a second stage
f the inversion that includes higher degree information. We now
se the full, unfiltered initial sea-level kernel and, over the course of
nother four iterations, the misfit decreases by a further two orders
f magnitude. The maximum difference between the predicted and
bserved present-day sea level is 0.38 m and satisfies our conver-
ence criteria (Fig. 6 ). Although minor ringing artefacts persist, this
econd stage of the inversion procedure reduces their maximum am-
litude to only ∼0.05 m. Thus, we now have a new initial sea level
hat, when used with our 1-D viscosity model, predicts present-day
ea level that is consistent with that of the original forward GIA
imulation for the filtered and bounded 3-D viscosity model. 

Using results from the forward GIA simulation that adopts the 1-
 viscosity model and the recalibrated initial sea level ( SL 

7 
0 ), we can

ow decompose the difference in final sea level for our two original
orward simulations (Fig. 3 c) into a component that is due to the
ifferent viscosity models and another arising from our erroneous
ssumption of the same initial sea level ( SL 

0 
0 ). The contribution of

he former is shown in Fig. 7 (b) and is obtained b y dif ferencing the
otal sea-level change predicted by the forward simulation with 3-D
iscosity (Fig. 3 a) from the 1-D case using the recalibrated initial
ea level (Fig. 7 a). Within numerical accuracy, this is equi v alent
o the difference between the two initial sea levels ( SL 

0 
0 and SL 

7 
0 ).

his difference (Fig. 7 b) is more subdued within and near the former
arine ice sheets in comparison to that of simulations using the same

nitial sea level (Fig. 3 c). For example, the difference in the total sea-
evel change within the marine portion of the former Fennoscandian
ce sheet has decreased from ∼200 to ∼170 m. This difference, and
 s  
thers shown in Fig. 7 (c), reflect changes in the history of loading
nd unloading of the oceans, including their viscoelastic response,
esulting from the use of different initial sea level ( SL 

0 
0 and SL 

7 
0 ) and

iscosity models (1-D and 3-D) that predict the same present-day
ea level. The overall pattern of 3-D-minus-1-D sea-level change,
evertheless, remains similar and our prior discussion in Section 6.1
n the influence of relative changes in viscosity therefore remains
alid. 

Through this example, we have demonstrated the success of the
nitial sea-level recalibration based on the adjoint method and gradi-
nt based optimization, which can be implemented in more complex
nversions that also updates other model parameters (e.g. mantle vis-
osity; Lloyd et al. in preparation). Although we focused here on
esults obtained using the method of steepest descent, we have also
ested the conjugate gradient method and found that it produces
onsistent results (Fig. 4 ). In all instances, the degree of success
f the inversion relies on a suitable smoothing strategy that assim-
lates and matches lower spherical harmonic degree structure first
nd then systematically introduces higher deg ree str ucture in latter
terations. This approach is similar to that taken in adjoint seismic
omography (e.g. Pratt 1999 ; Fichtner et al. 2009 ; Zhu et al. 2015 ),
here pro gressi vel y shorter period waveforms are assimilated in

ater iterations. In our inversion strategy, ho wever , w e ha ve chosen
o control the length scale of new information by low-pass filter-
ng the gradient as opposed to filtering the predicted and observed
ata (e.g. Pratt 1999 ; Fichtner et al. 2009 ; Zhu et al. 2015 ). Finally,
rmed with two suitably calibrated initial sea levels ( SL 

0 
0 and SL 

7 
0 ),

e can now explore viscosity sensitivity kernels for sea-level ob-
ervations in order to understand how these data will likely inform
nversions for 3-D mantle viscosity. 

.3 Viscosity sensitivity kernels for sea-level observations 
dopting a 1-D viscosity model 

e begin by examining 3-D viscosity sensitivity kernels that relate
hanges in sea-level observations to viscosity perturbation within
he solid Earth adopting a 1-D viscosity model. We recall that these
ernels are calculated following eq. ( 4 ) and that they are a lin-
ar approximation of the Fr échet deri v ati ve relati ve to the assumed
iscosity structure, in which the range of their validity has been
xplored by Crawford et al. ( 2018 ), Tromp & Mitrovica ( 2000 ) and
n Appendix C2 . We consider two types of sea-level observations
nd hence two types of viscosity sensitivity kernels. First, an ab-
olute sea-level point measurement at a given time, t obs , which was

art/ggad455_f3.eps
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Figure 4. Evolution of the misfit and convergence of the initial sea-level 
recalibration. (a) A plot of misfit versus iteration number showing: (blue 
line) the unmodified recalibration procedure where no smoothing is applied 
to the gradient; and (black lines) two-stage recalibration procedure where the 
gradient is initially smoothed for four iteration (i.e. prior to the red line) using 
eq. ( 18 ) with l c = 60, beyond which no smoothing is applied to the gradient. 
The solid and dashed lines indicate inversions whose search directions are 
determined by steepest decent or conjugate gradient, respecti vel y. Finall y, 
the large blue and black circles indicate iterations shown in Figs 5 and 6 , 
respecti vel y (b) A plot showing convergence, which is e v aluated using the 
maximum amplitude of the difference between the observed and predicted 
final sea level. The green dashed line indicates the convergence threshold 
of 0.5 m and other annotations are similar to panel (a). In this study, we use 
the result from the two-stage procedure using steepest descent. 
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initially discussed by Crawford et al. ( 2018 ). Secondly, a relative 
sea-level point measurement that dates from a given time, t obs , but 
is defined as the difference in sea level between t obs and present day, 
t p , and therefore reflects the change in sea level between these two 
times. This latter type generally corresponds to observations made 
in the field, since ele v ations of palaeo sea-le vel indicators are mea- 
sured relative to present-day sea level. We note that both absolute 
sea level and relative sea level are spatially variable fields. Recall 
that calculations of relati ve sea-le vel viscosity kernels only require 
a change to the adjoint load (Section 3.1 ) and thus, eq. ( 4 ) remains 
unchanged. In addition, sensitivity kernels for relative sea-level ob- 
servations can also be constructed by differencing those for two 
absolute sea-level observations [i.e. K SL ( x obs , t obs ) − K SL ( x obs , t p ); 
Section 3.1 ]. 

In order to explore how relative sea-level measurements might 
sense Earth’s viscosity structure and how these sensitivities differ 
from those of absolute sea-level measurements, we examine the vis- 
cosity sensitivity kernels in three settings: (1) in the near field of the 
Fennoscandian ice sheet at Andenes, Norway, (2) on the forebulge 
of the Laurentide ice sheet at Barbados and (3) in the far field at the 
Seychelles. To aid with intercomparison of the kernels, we consider 
ages of 10 and 0 ka for the absolute sea-level observations and 10–
0 ka for the relative sea-level observation. For further simplicity, we 
adopt our 1-D viscosity model (Section 5.1 ), its ne wl y determined 
initial sea level ( SL 

7 
0 ), and perform the forward and adjoint GIA 

simulations as described in Section 5 . Due to rotational symmetry 
of the 1-D solid Earth structure, differences in the viscosity kernel 
for each site reflects only its location with respect to the evolving 
ice sheet and oceans. By not adopting a 3-D viscosity model at this 
stage, we ensure that an y laterall y v arying features of the kernel 
are related to the induced deviatoric stresses and not their depen- 
dence on η−1 . Fur ther more, although the adjoint method provides 
the contribution to the kernel, δK , at each individual time step, 
yielding insight into the deformational processes that influence the 
observation at each point in time, we examine these kernels in their 
time-integ rated for m, K , to obtain a complete picture of the total 
sensitivity. From a geophysical imaging perspective, it is this time- 
integ rated ker nel that we relate to an obser vation or misfit. Thus, we 
will focus on building intuition concerning how the dominant phys- 
ical processes are encoded within the viscosity sensitivity kernel, as 
well as how the definition of the sea-level observation influences the 
ker nel str ucture and its dependency on various physical processes. 
In turn, this intuition will guide how we invert palaeo sea-level 
observations for 3-D viscosity structure and how we interpret the 
resulting images in our companion study. 

Critical to decoding these kernels is the ability to interpret their 
meaning. For absolute sea-level observations, positive (negative) 
kernel values indicate that an increase in viscosity at that location 
within the Earth leads to an increase (decrease) in sea level at the 
observation site. For relativ e sea-lev el kernels, changes to viscosity 
affect both sea level at the time the observation was encoded and 
sea level at the present. This factor can lead to the cancellation of 
similarly sensed regions and will highlight processes that lead to 
differences in the sea-level signal between the time of the sea-level 
observation and the present. In terms of the behaviour of relative sea 
le vel, a positi ve (negati ve) kernel v alue indicates that an increase in 
viscosity at that location within the Earth will increase (decrease) 
relative sea level at the observation site. The link between relative 
sea-level kernels and corresponding relative sea-level change is, 
ho wever , more obscure since it depends on the size and timing of 
the surface load changes (i.e. ice sheet and ocean) relative to t obs and 
t p , and whether sea level has risen or fallen over this time window. 
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Figure 5. Unmodified initial sea-level recalibration. (a) The initial sea-level sensitivity kernel for the first iteration. (b) The update applied to the initial sea 
level in the first iteration. (c) The difference between the observed (i.e. target) present-day sea level and the prediction after four iterations (N .B., equi v alent plot 
for the first iteration appears in Fig. 3 c). (d) The initial sea-level sensitivity kernel for the fourth iteration. (e) The update applied to the initial sea level in the 
fourth iteration. The red dashed line shows the location of the 30 ◦-wide inset maps over Canada and Fennoscandia plotted in lower left and right, respecti vel y. 
These maps show the features that ultimately cause the inversion to fail to converge. The corresponding misfit and convergence evolution of this procedure are 
shown by the blue line in Fig. 4 . 
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A few characteristics appear to be ubiquitous to the viscosity sen-
itivity kernels for absolute sea-level and relative sea-level observa-
ions (Figs 8 –10 ). With regards to absolute sea-level observations,
ome of these characteristics were originally reported by Crawford
t al. ( 2018 ), but are listed here for completeness. First, the ampli-
ude of the viscosity sensitivity kernels for near-field observation
ites are 10–100 times greater than those for far-field observation
ites. Secondly, there is sensitivity throughout all depths of the man-
le. At shallow depths, peak sensitivities are concentrated beneath
he observation site as well as beneath those regions experiencing
ignificant surface-load changes due to the evolving ice sheets and
edistribution of the oceans. These regions of sensitivity broaden
ith depth, consistent with the results of Paulson et al. ( 2005 ) and
u ( 2006 ). As we approach the core–mantle boundary, far-field

bservation sites often have visible global coverage, while near-
eld observation sites have higher amplitude sensitivities that are
patiall y restricti ve. Ne ver theless, the surface integ ral of the 3-D
ensitivity kernel at a given depth in the deep mantle is typically
mall compared to shallower depths, which is consistent with past
tudies that determined 1-D radial sensitivity kernels for mantle
iscosity (e.g. Mitrovica & Peltier 1991b ; Crawford et al. 2018 ).
t is only when the corresponding 3-D viscosity sensitivity kernels
re calculated that one realizes the intuition gained from their 1-D
ounterparts can be misleading. Instead, 3-D sensitivity kernels for
oth absolute sea-level and relative sea-level observations have non-
egligible sensitivities within the deep mantle and possess unique
atterns that reflect the location of the observation site with respect
o the surface load changes. Therefore, there exists great promise
or imaging not just the upper portion of the 3-D viscosity structure,
ut also its deepest depths. Third, the existence of positive and neg-
tiv e re gions within the viscosity kernels for both types of sea-level
bservations indicates that there is potential to mask the influence
 t  
f Earth structure on an observation, which has previously been
oted in forward modelling studies (e.g. Wu & van der Wal 2003 ).
lthough these generalizations are broadly correct, there are some
eviations and finer-scale structures within the kernels whose ori-
in is not easil y discerned. Ne vertheless, the structure of the kernels
eflects physical processes that influence the behaviour of sea level
t the observation site, which we will now discuss for three different
ettings. 

.3.1 Viscosity sensitivity kernels for Andenes, Norway 

n our first example, we consider a sea-level observation site at
ndenes, Norway, where local sea-level has fallen over the last
0 kyr of the simulation. Fig. 8 shows depth slices at 75, 600 and
400 km through the viscosity sensitivity kernels for absolute sea-
e vel observ ations at 10 and 0 ka, as well as for a relative sea-
e vel observ ation covering the period 10–0 ka. These kernels are
ominated by high-amplitude features that reflect the nearest re-
ions of ice-mass change. More distant load changes, such as the
hrinking Laurentide ice sheet, generate sensitivities within the un-
erlying mantle that have a similar magnitude to those observed
n kernels for far-field observations at the same location (e.g. Sey-
helles; Fig. 10 ). Although these low-amplitude sensitivities are
resent within the kernel and may have rele v ance for imaging, we
ill focus on higher amplitude features at each depth and begin
ur discussion with the absolute sea-le vel observ ations at 10 and
 ka. 

Within the lithosphere, the maximum amplitude of the kernel is
mall relative to underlying regions of the sublithospheric mantle
Figs 8 a and d). This reflects the high viscosity of the lithosphere
 ∼1.5 × 10 26 Pa ·s), which essentially behaves elastically at the
ime-scale of the simulation, and thus has a negligible effect on
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Figure 6. Two-stage initial sea-level recalibration. The panels are similar to Fig. 5 , but show results from the two-stage recalibration procedure corresponding 
to the solid black line in Fig. 4 . In the first four iterations, this inversion applies a low-pass filter to the initial sea-level kernel to exclude information from the 
highest spherical harmonic degrees. Thereafter, this filter is removed and the solution satisfies our convergence criterion by iteration sev en. P anel (f) shows the 
difference between the observed (i.e. target) and predicted present-day sea level following convergence. 

Figure 7. Influence of lateral viscosity variations and initial sea level. (a) The total sea-level change from 26 ka to 1950 CE for a simulation using the 1-D 

viscosity structure and recalibrated initial sea level, SL 

7 
0 . (b) The contribution to the difference in the final sea level from Fig. 3 (c) that is solely due to adopting 

the filtered and bounded 3-D viscosity model instead of the 1-D model. This field is obtained b y dif ferencing the sea-level change in Figs 3 (a) and 7 (a), and is 
equi v alent to S L 

0 
0 − S L 

7 
0 . (c) The contribution to the difference in final sea level from Fig. 3 (c) that is solely due to use of an incorrect initial sea level. This 

latter contribution can adversely affects the use of sea-level observations to image mantle structure. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/236/2/1139/7440030 by R

.G
. M

enzies Library, Building #2, Australian N
ational U

niversity user on 04 January 2024
absolute sea-le vel observ ations if its viscosity is perturbed. For 
both absolute sea-level observations (10 and 0 ka) along profile A 

(Fig. S15 ), there is a general pattern of positive kernel values beneath 
Andenes extending to the southeast and negative kernel values to 
the northwest that reach a peak amplitude greater than 1000 ×
10 −20 m 

−2 at 300 km depth and persist down to ∼550 km. Further 
to the northwest, the kernel again becomes positive, though its 
amplitude is much smaller. 

art/ggad455_f6.eps
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Figure 8. Comparison of viscosity sensitivity kernels for absolute and relati ve sea-le vel observ ations at Andenes, Norw ay. (a–c) Slices at 75, 600 and 2400 km 

depth through the viscosity sensitivity kernel for an absolute sea-le vel observ ation at 10 ka. The inset map is centred on the observation site (cyan circle) and 
has a width of 30 ◦. It is extent is shown on the main map as a thick red dashed line. The thin blue dashed line shows the 0 m sea level contour at 10 ka. (d–f) 
The same, but for an absolute sea-level observation at 0 ka. The thin red dashed line shows the 0 m sea level contour at 0 ka. (g–i) The same, but for a relative 
sea-le vel observ ation from 10 ka. Note that the colour scale for each column is chosen to symmetrically span the range of values for the relati ve sea-le vel 
viscosity sensitivity kernel and thus, regions of high amplitude absolute sea-level sensitivity may be saturated. 
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Across this region, the structure of the viscosity sensitivity ker-
els for absolute sea-level observations reflect a number of linked
rocesses. First, the positive kernel region beneath and to the south-
ast, underlying the former Fennoscandian ice sheet, indicates that
n increase to viscosity there will lead to an increase in absolute sea
evel at Andenes. This relationship follows from the fact that a stiffer
antle in this region will lead to slower uplift during deglaciation

nd hence higher absolute sea le vel. Secondl y, the negati ve kernel
egion to the northwest indicates an increase in viscosity there will
ecrease absolute sea level at Andenes. We suggest that this is be-
ause stiffer viscosities will modify the behaviour of the forebulge,
educing its amplitude and increasing its width either side of the
inge point. As a result, the solid Earth at Andenes will become
igher and absolute sea level will decrease. Finally, the transition
ack to positive kernel values further to the northwest again indi-
ates that an increase in viscosity here will result in an increase
n absolute sea level at Andenes. We speculate that this is because
 stiffer mantle beneath this region would lead to less subsidence
f the ocean basin, with the formerly accommodated water mass
ow redistributed over the global ocean leading to an increase in
bsolute sea level at Andenes. 

From ∼550 to 670 km depth (i.e. the base of the transition zone)
he dominant features within the viscosity sensitivity kernels for
he absolute sea-le vel observ ations flip polarity. Here, the kernels
re ne gativ e beneath Andenes, while the surrounding area is now
ositive (Figs 8 b, e and Fig. S15 ). This ne gativ e re gion of the kernel
ndicates that an increase in viscosity there will decrease absolute
ea level at Andenes. At the same time because this region under-
ies the former Fennoscandian ice sheet where greater solid Earth
plift occurs, we more intuiti vel y expect an increase in viscosity to
ecrease solid Earth uplift and hence increase absolute sea level,
imilar to what is indicated by the kernels at shallower depth. Thus,
 ne gativ e kernel value beneath the ice sheet initially seems puz-
ling. We suggest that this behaviour occurs due to coupling of the
ower viscosity (5 × 10 20 Pa ·s) upper mantle and transition zone
ith the higher viscosity (5 × 10 21 Pa ·s) lower mantle, which is a

onsequence of the boundary condition that the change in displace-
ent, u , across a solid-to-solid boundary is 0 (eq. 2.14 of Al-Attar
 Tromp 2013 ; i.e. a void cannot form;). In part to satisfy this

oundary condition and in order to match deformation at the top of
he higher viscosity lower mantle, vertical uplift above the 670 km
iscosity discontinuity must decrease relative to that predicted for
n earth model with a uniform viscosity of 5 × 10 20 Pa ·s. Increasing
antle viscosity just above 670 km depth lowers the viscosity con-

rast and shrinks the required reduction in vertical uplift necessary
o satisfy the boundary condition. Ne gativ e sensitivities between

550 and 670 km depth demarcate the region where an increase in
iscosity will allow for greater overall uplift of the solid Earth and

art/ggad455_f8.eps
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Figure 9. Comparison of viscosity sensitivity kernels for absolute and relati ve sea-le vel observ ations at Barbados. The panels are the same as Fig. 8 except 
that the shallowest depth slice is now at 150 km and the width of inset map is 20 ◦. 
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hence lower absolute sea level. This interpretation is consistent with 
the kernels switching back to positive at and below 670 km depth 
(Figs 8 c, f and S15 ), where a decrease in viscosity (i.e. a reduction 
of the viscosity contrast) leads to a decrease in absolute sea level 
at Andenes. This simple depth-varying structure (i.e. + , −, + ) of 
the kernel illustrates how the change in absolute sea level at the 
observation site due to viscosity perturbation in one region can be 
masked by an appropriately sized perturbation in another region. It 
is clear that this masking behaviour occurs with other observations 
(e.g. relative sea level) and thus, may explain why Wu & van der Wal 
( 2003 ) found that relative sea-level observations near the centre of 
large load changes may be unable to detect lower mantle viscosity 
perturbations if the upper mantle and transition zone is perturbed 
in the opposite sense. It is important to note, ho wever , that our sen- 
sitivity kernels are calculated for a different 1-D viscosity structure 
than Wu & van der Wal ( 2003 ) and that a proper comparison would 
require consideration of the full 3-D structure of the kernel. 

Surrounding the ne gativ e re gion between ∼550 and 670 km 

depth, the kernel is positive. Although subsidence due to fore- 
bulge collapse does occur to the northwest of Andenes, we find 
that any vertical deformation associated with this process dissi- 
pates by ∼325 km depth and, at deeper depths, is characterized by 
low-amplitude uplift. Thus, we suggest that positive kernel values 
within the broader transition zone reflect the longer wavelength load 
change associated with deglaciation of the Fennoscandian ice sheet 
rather than forebulge collapse. From this standpoint, an increase in 
viscosity in this positive kernel region will reduce solid Earth uplift 
and increase absolute sea level. 
Finally, at depths of 670 km and greater (Figs 8 c, f and S15 ), the 
viscosity sensitivity kernel beneath nor ther n Europe is again posi- 
tive, indicating that an increase in viscosity there will increase abso- 
lute sea level at Andenes. The amplitude of the kernel is smaller due 
to the higher viscosity of the lower mantle (i.e. the η−1 dependence 
of eq. 4 ) and greater distance from the surface load change. The 
latter is a result of attenuation, which also more strongly dissipates 
the higher spherical harmonic degrees of deformation. Thus, defor- 
mation in the lower mantle beneath nor ther n Europe is controlled 
by the lower spherical har monic deg ree components of the shrink- 
ing Fennoscandian ice sheet. By increasing the viscosity beneath 
nor ther n Europe, the extent of solid Earth uplift due to unloading of 
the ice sheet is reduced and hence absolute sea level at Andenes in- 
creases. In contrast, the kernels are ne gativ e beneath nor ther n Nor th 
America. Through similar logic, an increase in viscosity there will 
increase absolute sea level above that region, thereby siphoning wa- 
ter mass from other parts of the global ocean and, in turn, decreasing 
absolute sea level at Andenes. 

With these considerations in mind, we next turn our attention to 
the viscosity sensitivity kernel for a relative sea-level observation 
spanning 10–0 ka (Figs 8 g–i) and begin by addressing the rela- 
tionship between absolute and relative sea-level change and their 
associated sensitivity kernels. We recall that sea level has fallen at 
Andenes over the final 10 kyr of the simulation, such that relative sea 
level is positive. Directly beneath Andenes at 75 km depth (Fig. 8 g), 
the kernel is ne gativ e, indicating that an increase in viscosity there 
will decrease relative sea level at the observation site. To make 
sense of this result, we recall that the kernel for a relative sea-level 
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Figure 10. Comparison of viscosity sensitivity kernels for absolute and relati ve sea-le vel observ ations at the Seychelles. The panels are the same as Fig. 8 
except that the shallowest depth slice is now at 300 km and the width of inset map is 40 ◦. 
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bservation is equivalent to the difference between the kernels for
bsolute sea-le vel observ ations at 10 and 0 ka. Within this region of
he mantle, both absolute sensitivity kernels are positive, indicating
hat an increase in viscosity there will increase absolute sea level at
he observation site. Furthermore, since K S L ( t = 10 ka) < K S L ( t =
 ka), the same increase in viscosity will result in a greater increase
n absolute sea level at 0 ka compared to 10 ka. When sea level
as fallen, this behaviour reduces the difference between absolute
ea level at 10 and 0 ka and thereby decreases the 10–0 ka relative
ea-level change, consistent with negative kernel values. 

Focusing now on its general structure, we see that the relative sea-
evel kernel is similar to those of absolute sea-level observations,
ut with flipped polarities (Figs 8 g–i). This pattern indicates that, in
ost regions, the absolute sea-level observation at 0 ka has greater

ensitivity to mantle viscosity than its equivalent at 10 ka. One
otable exception is observed beneath the nor ther n marine-based
ortion of the Fennoscandian ice sheet at 600 km depth (Fig. 8 h).
ere, kernels for both types of sea-level observations are ne gativ e

nd hence the kernel for a sea-level observation at 10 ka has a
reater amplitude. This difference occurs because the ice sheet
isappeared from this region prior to 10 ka (Fig. 1 b) and illustrates
hat the amplitude of the kernel for absolute sea-level observations
s greater when the time between the same surface-load change and
bservation time is smaller. In contrast, immediately southeast of
ndenes, a localized region at 600 km depth does change polarity

n the kernel for relative sea level due to further ice mass loss
ccurring after 10 ka (Fig. 1 c). These effects demonstrate that the
patiotemporal history of loading has an important influence on the
tructure of both types of kernels. 

.3.2 Viscosity sensitivity kernels for Barbados 

n our second example, we consider an observation site at Barba-
os, which lies at the edge of the forebulge of the Laurentide ice
heet. Given its proximity to the ice sheet, it seems natural to as-
ume that sea-le vel observ ations here are sensitive to many of the
ame deformational processes as the site at Andenes. Ho wever , the
if ferent location relati ve to the load changes causes these defor-
ational process and potential perturbations to the 1-D viscosity

tructure to influence sea level at Barbados in a different manner.
ig. 9 shows that sensitivity to mantle viscosity is focused beneath

he observation site and the closest regions of surface load change
i.e. the Laurentide ice sheet), with minor sensitivity beneath the
ennoscandian and West Antarctic ice sheets. Although we will
ocus on the higher amplitude features, it is worth noting that the
arbados absolute sea-level observation at 10 ka has little sensitiv-

ty to mantle viscosity beneath the West Antarctic ice sheet relative
o that beneath the Fennoscandian ice sheet at 150 and 600 km depth
Fig. 9 a,b). This is because much of the ice-mass change in West
ntarctica occurs after 10 ka, where as much of the Fennoscandian

ce-mass change occurs prior to 10 ka (Fig. 1 ). In contrast, for the
arbados absolute sea-level observation at 0 ka, the kernel ampli-

ude beneath West Antarctica and Fennoscandia is similar (Figs 9 d
nd e). Thus, this example highlights the complex inter-play of
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distance (e.g. observation site to load change) with the load change 
magnitude, timing, and spatial extent in controlling the amplitude of 
the sensitivity kernel. As a result of these same factors, we observe 
that the peak amplitudes of the sensitivity kernels for Barbados are 
an order of magnitude smaller than those of Andenes. This am- 
plitude difference will require careful attention in future work that 
images mantle viscosity using sea-level data. 

Viscosity sensitivity kernels for the two absolute sea-level ob- 
servations at 10 and 0 ka are more complex for Barbados than 
Andenes and hence more difficult to interpret. Positive kernel val- 
ues at 150 and 600 km depth are predominantly observed beneath 
the former Laurentide ice sheet and north of Barbados (Figs 9 a and 
d), indicating that an increase in viscosity there will raise absolute 
sea level at Barbados. We speculate that, for areas around the periph- 
ery of the former Laurentide ice sheet, a stiffer mantle will lead to 
slower forebulge subsidence, which causes absolute sea level to be 
higher elsewhere, including Barbados. High positive kernel values 
along the transect from Barbados to the Laurentide ice sheet might 
indicate that a dif ferentl y shaped forebulge, due to a stiffer man- 
tle, can result in deeper water depths at Barbados. At upper mantle 
depths, the kernel is near zero or ne gativ e beneath Barbados itself 
(Figs 9 a and d), indicating that an increase in viscosity will reduce 
subsidence of the solid Earth in response to the increased ocean 
load from deglaciation. Hence, absolute sea level will be lower if 
the upper mantle is stiffer directly beneath Barbados. This inter- 
pretation is consistent with Austermann et al. ( 2013 ), who showed 
that a high-viscosity slab in the Caribbean subduction zone acts to 
reduce local sea level. 

Finally, at 2400 km depth, deformation is again dominated by 
long-wavelength load changes that will be primarily related to the 
shrinking Laurentide ice sheet. Here, the sensitivity kernel has a 
positi ve kernel v alue in the centre of the region between the Lau- 
rentide ice sheet and Barbados, which is ringed b y negati ve kernel 
values (Figs 9 c and f). This feature reflects the relative geographic 
location of the load change and the observation site. Although its 
full nature is unclear, we note that the boundary from positive to 
ne gativ e kernel values nearest Barbados corresponds to a change 
from uplift to subsidence of the solid Earth at this depth in the 
forward simulation. 

We next turn our attention to the viscosity sensitivity kernel 
for a relative sea-level observation spanning 10–0 ka in Barbados 
(Figs 9 g–i). In this example, sea level has risen at the observation 
site (i.e. relative sea level is negative) between 10 and 0 ka during 
the simulation. Directly beneath Barbados at 150 km depth, the 
sensitivity kernel for relative sea level is negative, indicating that an 
increase in viscosity there will decrease relative sea level (Fig. 9 g). 
At this same location, the kernels for absolute sea-level observations 
are also ne gativ e with K SL ( t = 10 ka) < K SL ( t = 0 ka). Thus, for the
same viscosity increase, the absolute sea level observation at 10 ka 
will decrease more than that at 0 ka, increasing the sea-level offset 
spanning 10–0 ka. Given this behaviour, along with the fact that sea 
level is rising, the relative sea level at the observation site will be- 
come more ne gativ e (i.e. decrease) as viscosity increases, consistent 
with ne gativ e kernel v alues for the relati ve sea-le vel observ ation. 

At depths of 150, 600 and 2400 km, we find that amplitudes 
across the footprint of the former Laurentide ice sheet are more 
uniform at a given depth in comparison to the two sensitivity kernels 
for absolute sea-level observations. At 150 km depth, there are 
stronger changes in polarity at continent–ocean boundaries along 
the nor theaster n United States and nor ther n South America, which 
we suggest relate to forebulge collapse and continental levering, 
respecti vel y. Meanwhile at 600 km depth, we observe an intriguing 
pattern of ne gativ e, positiv e and then ne gativ e kernel values in the 
vicinity of Barbados, which is roughl y ortho gonal to the great circle 
path connecting Barbados to Hudson Bay. Because Barbados lies 
at the edge of the Laurentide forebulge this pattern likely relates to 
the dynamics of forebulge collapse (Fig. 9 h). At 2400 km depth, we 
note that the amplitude of the viscosity sensitivity kernel is only a 
factor of two smaller than that observed at 150 km depth (Fig. 9 i). 
As we will see in the next example, this pattern of non-negligible 
sensitivity to deep mantle viscosity structure is a ubiquitous feature 
of these sensitivity kernels. 

6.3.3 Viscosity sensitivity kernels for Seychelles 

In our final example, we consider a far-field observation site in 
the Seychelles where sea level has risen during the final 10 kyr 
of the forward GIA simulation. Fig. 10 shows images of the vis- 
cosity sensitivity kernels at depths of 300, 600 and 2400 km for 
the two absolute sea-le vel observ ations at 10 and 0 ka, as well as 
for a relative sea-level observation spanning the period 10–0 ka. 
We observe two distinct groups of kernels for observations that 
are located at far-field sites. The first is characterized by a sig- 
nificant continental region lying between the observation site and 
the dominant region of ice mass change, such that there is no ap- 
preciable ocean load change within this intermediate region. As a 
result, a more diffuse sensitivity pattern develops similar to that 
observed in the Seychelles example (Fig. 10 ). The second group 
occurs for observation sites, such as Tahiti, where the intervening 
region is predominantly ocean basin. These kernels exhibit an ap- 
proximately linear, high-amplitude zone of sensitivity between the 
site and locations of ice-mass change (Crawford et al. 2018 ), which 
is reminiscent of banana–doughnut kernels in seismology (Dahlen 
et al. 2000 ). While w e ha v e not illustrated an e xample of this sec-
ond group here, our kernel for Barbados has some similar features 
(Fig. 9 ). 

Within the viscosity sensitivity kernel for absolute sea-level mea- 
surements at 10 and 0 ka, there are again a number of local features 
that reflect a range of deformational processes. First, the ne gativ e 
kernel value at all depths beneath the Seychelles reflects the fact that, 
during deglaciation, the ocean load increases and a stiffer mantle 
therefore results in less subsidence and lower absolute sea level, sim- 
ilar to Barbados. Fur ther more, the ne gativ e kernel values beneath 
the observation site are observed throughout the mantle, suggesting 
that, in contrast to the Andenes example, coupling between the upper 
and lower mantle has limited influence on the behaviour of sea level 
at this site. We speculate that this aspect occurs because the load 
change due to the ocean, though long wavelength, is small in am- 
plitude relative to that of the Fennoscandian ice sheet. Meanwhile, 
surrounding the Seychelles and beneath the ocean, the sensitivity 
kernel is positive at 300 km depth (Figs 10 a and d), indicating that 
an increase in viscosity there will increase absolute sea level. This 
relationship suggests that a stiffer mantle in this region will result 
in less subsidence of the solid Earth due to the growing ocean load, 
with the corresponding reduction in local ocean capacity raising 
absolute sea level at the observation site. Further to the w est, w e 
see a positiv e-to-ne gativ e polarity change at 300 km depth crossing 
from offshore to onshore east Africa (Figs 10 a and d). This pattern 
reflects the influence of continental levering on the behaviour of 
sea level at the Seychelles, with an increase in viscosity causing 
deformation across the coastline to become lower amplitude and 
longer wavelength. We suggest that the Seychelles are suf ficientl y 
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ubsidence during deglaciation, raising the solid Earth and reducing
bsolute sea level at the observation site. 

The upper mantle and transition zone kernels for absolute sea-
e vel observ ations at both 10 and 0 ka have similar amplitudes within
he vicinity of the ice sheets, with the highest values occurring
eneath their peripheries. We argue that this sensitivity pattern is
elated to ocean siphoning (Mitrovica & Milne 2003 ), in which a
igher viscosity leads to slower subsidence of the peripheral bulges
nd hence higher absolute sea level in the far field. Additionally, the
ernel at 0 ka exhibits a negati ve anomal y beneath Hudson Bay. This
rea is rebounding in response to glacial unloading and, following
he demise of the Laurentide ice sheet, continuing uplift will expel
ater from Hudson Bay and cause absolute sea level to rise in the

ar field. 
Figs 10 (g)–(i) also shows the viscosity sensitivity kernel for a

elati ve sea-le vel measurement in the Seychelles dating from 10 ka.
lthough this kernel does exhibit differences in polarity in some lo-

ations, the more intriguing feature is its loss of sensitivity through-
ut some regions of the mantle. For example, at 300 km depth, there
s a reduction in regional sensitivity to viscosity and the observa-
ion is restricted to sensing local viscosity structure predominantly
eneath the observation site and in the vicinity of the east African
oastline. This behaviour occurs because the evolution of the local
cean load leads to similar sensitivities for absolute sea-level ob-
ervations at 10 and 0 ka, except for a slight westward (i.e. inland)
hift of the coastline due to shoreline migration. Thus, it is near this
egion that visib le sensiti vities are focused, indicating that relative
ea level in the Seychelles from 10 ka is more sensitive to shoreline
igration than continental le vering. Similarl y at 300 and 600 km

epth, there is a reduction in the spatial extent of sensitivities at
he peripheries of the ice sheets. We conclude from this pattern
hat the relative sea-level measurement is less sensitive to forebulge
eformation and associated ocean siphoning than its constituent ab-
olute sea-level observations. Through these two examples, we have
emonstrated that absolute and relative sea-level observations from
he same location and time period can have quite distinct sensitivi-
ies to the viscosity structure of the mantle and thus, record distinct
eformational processes. 

To finish, we return to a striking characteristic of the viscosity
ensitivity kernels for both types of far-field sea-level observations,
hich is that similar amplitude sensitivities are found beneath both

he region of the observation site and the regions of ice mass change,
ven when the two are antipodal. This simple observation has two
rofound consequences for the use of far-field relative sea-level
ata to constrain mantle viscosity and, by extension, ice history.
irst, for a laterally heterogeneous Earth, their use will lead to an
stimate that blends local and distal viscosity structure. Such biases
n 1-D estimates of mantle viscosity have been demonstrated in
orw ard anal yses (e.g. Lau et al. 2018 ), but the sensitivity kernels
n Fig. 10 quantitati vel y illustrate the reasons for this behaviour.
rom the perspective of a local relative sea-level dataset, one cannot
imply disentangle the influence of the local viscosity structure,
hich controls the relative local distribution of the ocean load,

rom the viscosity structure beneath the changing ice sheet and
orebulge regions, which dominates the change in total water mass
ccommodated in the observation region. Furthermore, from the
erspective of a global far-field relative sea-level dataset, this bias
s exacerbated by the fact that the mantle underlying regions of
ce-mass change is sampled by ever y obser vation, while the local
antle structure in the far field may only be sampled by a handful

f observations. An important consequence is that 1-D estimates
f mantle viscosity are likely biased towards the viscosity structure
nderlying regions of significant load change, such as beneath the
aurentide and Fennoscandian ice sheets. 
Secondl y, the sensiti vity kernels in Fig. 10 hint at a means to
inimize sensitivity to distal mantle structure, while preserving

ensitivity to local structure. We can envision this idea by imag-
ning that a second observation site exists on the nor ther n coast
f Madagascar. While its kernel will locally appear quite differ-
nt, distal regions will be similar and thus, b y dif ferencing kernels
i.e. differencing the relative sea-level measurements), sensitivity is
inimized to distal mantle structure whilst being locally enhanced.
his thought experiment demonstrates the potential power of differ-
ntial relative sea-level measurements for constraining local mantle
heology (e.g. Nakada & Lambeck 1989 ). 

.4 Viscosity sensitivity kernels for relative sea-level 
bservations adopting a 3-D viscosity model 

ow that we have gained some insight into the nature of viscosity
ensitivity kernels for absolute and relativ e sea-lev el observations
n a 1-D radial Earth, we turn our attention to exploring the effects
f lateral variability in viscosity, which will begin to reveal the non-
inear nature of the viscosity Fr échet deri v ati ves. Importantl y, these
esults represent the first time that global 3-D viscosity sensitivity
ernels for absolute and relative sea-level observations have been
obustly calculated for a 3-D viscosity model, following in the
ootsteps of recent kernels for the rate of change of the degree 2
onal harmonic of Earth’s geopotential ( ̇J 2 ; Kim et al. 2022 ). 

Through two examples, we investigate the influence of geody-
amic features including hotspots, slabs and variable lithospheric
hickness, which are likely to be characterized by variations in vis-
osity structure. Although these sources of viscosity heterogeneity
nfluence the sensitivity kernels for both types of sea-level observa-
ions (e.g. Figs 11 –12 and S7 –S18 ), we focus on those for relative
ea-le vel observ ations since they form the foundation of the palaeo
ea-level record and will be used to invert for 3-D mantle structure
n our companion study (Lloyd et al. in preparation). Despite using
 long-wavelength inference of Earth’s 3-D viscous structure, the
ernels for both types of sea-level observations represent a more
ealistic quantification of observ ational sensiti vity to viscosity com-
ared to those based on a 1-D radial viscosity model (Section 6.3
nd Crawford et al. 2018 ). 

In our first example, we consider a relative sea-level observation
rom the Amundsen Sea Embayment of Antarctica that dates to
.2 ka (Johnson et al. 2008 ). In this region, seismically slow mantle
ave speeds (Lloyd et al. 2020 ) and rapid uplift rates recorded by

ontinuous GNSS stations installed on bedrock suggest the pres-
nce of a low viscosity ( ∼10 18 Pa ·s) upper mantle and transition
one (Barletta et al. 2018 ). To first order, this feature is present in
ur filtered and bounded 3-D viscosity inference (Fig. 2 ), although
t lacks the lowest of viscosities and finer scale structure that has
een imaged by regional seismic tomography models (e.g. Lloyd
t al. 2015 , 2020 ; Lucas et al. 2020 ). Nevertheless, it still demon-
trates the dramatic influence that even this modest degree of lateral
iscosity heterogeneity can have on the structure of the viscosity
ensitivity kernel (Fig. 11 ). 

Inclusion of lateral viscosity variability causes a dramatic in-
rease in the amplitude of the sensitivity kernel at shallow depths
e.g. 75 km) from ±0.01 × 10 −20 to ±180 × 10 −20 m 

−2 , which
eflects an increase in viscous deformation at this depth due to a
eaker regional viscosity structure. In addition, we find that ker-
els based on the 3-D viscosity model are characterized by spatially

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad455#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad455#supplementary-data
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Figure 11. Relative sea-level viscosity sensitivity kernels for 1-D and 3-D viscosity structure. Slices at 75 and 150 km depth through the viscosity sensitivity 
kernels for a relative sea-level observation on an unnamed island in the Amundsen Sea Embayment (cyan circle) dating to 2.2 ka (Johnson et al. 2008 ). The first 
column shows the sensitivity kernel obtained when assuming our 1-D viscosity model (Section 5.1 and Fig. S4 ) and the second column shows the sensitivity 
kernel obtained when assuming our filtered and bounded 3-D viscosity inference (Fig. 2 ). It is this 3-D viscosity structure that is shown in the third column 
and regions where the amplitude of the sensitivity kernel is less than 10 −20 m 

−2 are shaded in grey. The inset map is centred on the North Pole and has a width 
of 90 ◦. 
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restricted, more focused features that exhibit greater complexity 
with depth. This pattern reflects the length scale of deformation 
present within the simulation and is controlled by the interaction 
between the viscosity structure and the distribution and magnitude 
of the surface-load changes. Fur ther more, the nearly pure elastic 
response of the thick East Antarctic lithosphere strongly zeros out 
the sensitivity to viscosity within this region (see Fig. 11 at 150 km 

depth). 
In our second example, we consider a hypothetical relative sea- 

le vel observ ation from Barbados that dates to 10 ka. Barbados rep- 
resents another end member of the plate tectonic regime, as it lies 
along the Caribbean subduction zone where cold, high-viscosity 
oceanic lithosphere is subducted into the mantle. The presence of 
this slab has pre viousl y been argued to suppress local viscous de- 
formation and to reduce sea-level change due to local ocean loading 
(Austermann et al. 2013 ). Although our filtered and truncated 3- 
D viscosity model does not have the resolution to fully capture 
the downgoing South American plate (Fig. 2 ), sufficient structure 
is present to capture its likely effects on the viscosity sensitivity 
kernel. 

In Fig. 12 , we see that introduction of 3-D structure beneath Bar- 
bados results in negligible sensitivity at 75 km depth within high- 
viscosity regions and indicates that, for these load changes and at 
these timescales, elastic deformation dominates within this region 
of the mantle. In contrast, weaker viscosity regions that are located 
further from the observation site exhibit notably higher sensitivity 
because they undergo greater viscous deformation. For example, 
portions of the mid-Atlantic ridge have positive kernel values, indi- 
cating that an increase in viscosity there would lead to an increase 
in relative sea-level at Barbados as mantle material cannot escape 
as ef ficientl y along the mid-ocean ridge axis. This behaviour of dis- 
tal viscous deformation more strongly influencing relative sea level 
at Barbados than local viscous deformation is consistent with the 
ocean loading model for the Caribbean subduction zone proposed 
by Austermann et al. ( 2013 ). In their model, they suggest that ocean 
loading at Barbados produces less viscous deformation because of 

art/ggad455_f11.eps
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Figure 12. Relative sea-level viscosity sensitivity kernels for 1-D and 3-D viscosity structure. The panels are similar to Fig. 11 , but for a relative sea-level 
observation located at Barbados dating to 10 ka. Here, we show slices at 75 and 1200 km depth with an inset map centred on Barbados that has a width of 20 ◦. 
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he high viscosity of the subducting South American Plate, while
djacent regions underlain by weaker viscosities undergo greater
iscous deformation. At greater depths (e.g. 1200 km), we observe
ignificant and complex changes to the structure of the viscosity sen-
itivity kernel for 1-D versus 3-D viscosity models. For example, we
bserve a switch from ne gativ e to positive kernel values beneath the
astern coast of North America, which may be related to presence
f the Farallon slab. Although the origin of these changes is not
l wa ys obvious, they demonstrate the importance of 3-D viscosity
tructure in modulating which regions of the Earth an observation
s sensitive to. 

Finally, it is worth noting that many regions of the mantle are
ot characterized by strong viscosity heterogeneity, but rather small
erturbations about the mean mantle viscosity (Figs 2 and S2 ).
hese regions generally exhibit more limited changes in first-order
tructure of the viscosity kernel (e.g. 300 km depth; Fig. S18 ), even
n cases where stronger viscosity heterogeneity exists at nearby
epths (e.g. 150 km depth; Fig. S18 ), although there are important
xceptions to this general rule. 

 C O N C LU S I O N S  

n part one of our efforts to lay out a robust framework for imaging
-D mantle viscosity using palaeo sea-level observations, we have
e vie wed the conceptual description of Fr échet deri v ati ves and how
o calculate them for viscosity and initial sea level in the GIA prob-
em. Fur ther more, a re vie w of the rate formulation of the forward
nd adjoint GIA problem as derived by Al-Attar & Tromp ( 2013 )
nd Crawford et al. ( 2018 ) is provided in Appendix A . We have
xtended this work to calculate sensitivity kernels for observations
f relative sea level and, in the process, have demonstrated that their
djoint loads are composed of equal but opposite sea-level adjoint
oads at t obs and t p . Moreover, we have shown that these kernels
an also be determined by differencing the sensitivity kernels for
bsolute sea-le vel observ ations at t obs and t p . Although we focus
n viscosity sensitivity kernels, the approach can also be used to
alculate sensitivity kernels for other model parameters, such as the
ate of change in ice thickness. 

We have also presented an extension to the numerical implemen-
ation of the forward and adjoint GIA problem that allows for the
nclusion of 3-D viscosity, which is a fundamental requirement for
-D imaging. In order to apply this extension sensibly, a new in-
erence of 3-D mantle viscosity based on the shear-wave speed of
LAD-M25 (Bozda ̆g et al. 2016 ; Lei et al. 2020 ) has been produced
 y roughl y following the approach of Austermann et al. ( 2021 ).
are has been taken during its construction to allow the entire man-

le and crust to be viscoelastic. Through this choice, we naturally
nclude lateral variations in lithospheric viscosity and thickness,
hereby permitting characteristics of the surface load changes to de-
ermine the extent of elastic versus viscous deformation. This new
-D viscosity inference is included within the Supporting Informa-
ion. 

We have demonstrated how to use the adjoint method to de-
ermine the initial sea level of the simulation, such that for any
ombination of Earth structure, rheology, and ice history, forward
IA simulations accurately arrive at the observed present-day to-
ography. In order to minimize numerical artefacts due to trunca-
ion of the underlying spherical harmonic basis functions, we have
hown the importance of a two-step inversion strategy that initially
ocuses on fitting long-w avelength observ ations before adding in
horter wavelength features. This same strategy can be ef fecti ve in
voiding local minima and has been successfully used in seismic
omography based on the adjoint method (e.g. Pratt 1999 ; Fichtner
t al. 2009 ; Zhu et al. 2015 ). Although a similar iterative approach
o this problem is routine (e.g. Kendall et al. 2005 ), our procedure
ermits simultaneous inversion for initial sea level and other model
arameters (e.g. mantle viscosity, ice thickness changes). 

Using a 1-D Earth structure, w e ha ve provided and discussed
he characteristics of viscosity sensitivity kernels for both absolute

art/ggad455_f12.eps
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and relati ve sea-le vel observ ations that are located in near-field, 
forebulge and far-field settings. Through these examples, we gain 
intuition concerning how physical processes are encoded within 
the structure of the kernel. For example, we have explored how 

the geometry of solid Earth rebound and forebulge collapse influ- 
ences sea level. We have observed how sea-le vel observ ations are 
influenced by continental levering, by ocean siphoning and expul- 
sion, as well as by coupling of weaker viscosity upper mantle with 
stiffer viscosity lower mantle. We acknowledge that identification 
of these processes can be challenging, but doing so provides deeper 
insight into the behaviour of sea level at a particular location and 
can improve the design of forward modeling experiments. 

Although there are man y dif ferences amongst the viscosity sen- 
sitivity kernels for observations of absolute sea level and relative 
sea level, there are four general characteristics that are worth reit- 
erating. First, kernels for near-field observations have amplitudes 
that are ∼10–100 times greater than those that are located on the 
forebulge or within the far field. Secondly, the sensitivities for near- 
field observations are dominated by the closest regions of surface 
mass change. In contrast, kernels for far-field observations have 
similar amplitude sensitivities both locally and beneath regions of 
major surface mass change (e.g. Laurentide ice sheet). This last 
point conveniently demonstrates why estimates of 1-D mantle vis- 
cosity based on far-field observations may be biased. Third, far-field 
viscosity sensitivity kernels fall into two groups that can be differen- 
tiated based on whether the region intermediate to the observation 
site and ice-mass change is dominantly continental or oceanic in 
nature. For the former, the structure of the kernel is more diffuse, 
while in the latter, a linear and higher amplitude zone of sensitivity 
develops that is reminiscent of banana–doughnut kernels in seis- 
mology (Dahlen et al. 2000 ). Finally, observations of absolute sea 
level and relative sea level are uniquely sensitive to viscosity in the 
deep mantle and the amplitude of their 3-D sensitivity kernels are 
non-negligible, in contrast to what has pre viousl y been suggested 
b y 1-D sensiti vity kernels (e.g. Mitrovica & Peltier 1991b ; Lau et al. 
2016 ). 

Finally, for the first time, w e ha ve presented global 3-D viscosity 
sensitivity kernels for both absolute and relative sea-level observa- 
tions that are calculated for a 3-D viscosity model. In general terms, 
inclusion of 3-D viscosity structure leads to greater complexity of 
the kernels. Using examples from the Amundsen Sea Embayment 
and Barbados, we have demonstrated that including lower viscosity 
regions introduces higher amplitude and shorter wavelength struc- 
ture into the kernel. In high-viscosity regions, the inverse is true 
and there is a threshold above which elastic deformation dominates 
and the viscosity sensitivity kernel tends to zero. This latter effect 
leads to the greatest sensitivities being concentrated in a lower vis- 
cosity region that can be quite distal to the observation site. These 
e xamples be gin to rev eal the non-linear behaviour of the viscosity 
Fr échet deri v ati ves and hence, indicate the highl y non-linear nature 
of an inversion for 3-D mantle viscosity. It is this inversion that we 
will focus on in a companion study (Lloyd et al. in preparation), 
where we will use the tools and intuition developed herein to de- 
v elop strate gies for inv erting synthetic palaeo sea-lev el observations 
in order to image a target 3-D mantle viscosity model. 

S U P P O RT I N G  I N F O R M AT I O N  

Supplementary data are available at GJI online. 
Figure S1. Voigt average shear-wave speeds from GLAD-M25 . 

Depth slices through the Voigt average shear-wave speed anomalies 
of GLAD-M25 (Bozda ̆g et al. 2016 ; Lei et al. 2020 ). Wave speed 
anomalies are plotted 1-D radial average of GLAD-M25 . 

Figure S2. Inferred viscosity structure based on GLAD-M25. 
Depth slices of the 3-D viscosity model inferred from the shear- 
wave speeds structure of GLAD-M25 (Fig. S1; Bozda ̆g et al. 2016 ; 
Lei et al. 2020 ). Viscosity anomalies are relative to the 1-D radial 
viscosity model discussed in Section 5.1 and shown in Fig. S4. 

Figure S3. Depth to the 1175 ◦C isotherm. Map showing the 
depth to the 1175 ◦C isotherm in the intermediate temperature in- 
ference based on the shear-wave speeds of GLAD-M25 (Bozda ̆g et al. 
2016 ; Lei et al. 2020 ). The 3-D temperature inference is provided 
in the Supporting Information. 

Figure S4. Distribution of the inferred 3-D viscosity structure 
and a comparison with our 1-D viscosity model. Plot of our 1-D 

radial viscosity model (cyan line), which from the surface to the 
core–mantle boundary has viscosities of ∼1.8 × 10 26 , 5 × 10 20 

and 5 × 10 21 Pa ·s with discontinuities at 100 and 670 km depth. 
In the background is a globally normalized 2-D density heatmap of 
the inferred 3-D viscosity structure (Fig. S2). When computing the 
normalized density for each spherical shell, each viscosity element 
is weighted by the sin of its colatitude in order to account for the 
change in element density along each line of latitude. In addition, 
the cyan dotted line indicates the minimum and maximum of the 
3-D viscosity model as a function of depth. 

Figure S5. Comparison of viscosity sensitivity kernels for sea- 
level and relative sea-level observations in the Amundsen Sea Em- 
bayment for a 1-D viscosity structure. Slices at 75, 150 and 300 km 

depth through the viscosity sensitivity kernels for (top row) a sea- 
le vel observ ation at 10 ka, (middle row) a sea-le vel observ ation at 
0 ka, and (bottom row) a relative sea-level measurement at 10 ka. 
The inset map, centred on the observation site (cyan circle), has a 
width of 30 ◦ and it is extent is shown by the red dashed line the 
main map. The colour scale for each column is chosen to symmet- 
rically span the full range of relative sea-level viscosity sensitivity 
kernel and thus, regions of the sea-level sensitivity kernels may be 
saturated. 

Figure S6. Comparison of viscosity sensitivity kernels for sea- 
level and relative sea-level observations in the Amundsen Sea Em- 
bayment for a 1-D viscosity structure. Panels are the same as Fig. S5, 
but for slices at 600, 1200 and 2400 km depth. 

Figure S7. Comparison of viscosity sensitivity kernels for sea- 
level and relative sea-level observations in the Amundsen Sea Em- 
bayment for a 3-D viscosity structure. Panels are the same as Fig. S5, 
but now we have used our filtered and bounded 3-D viscosity infer- 
ence (Fig. 2 ). 

Figure S8. Comparison of viscosity sensitivity kernels for sea- 
level and relative sea-level observations in the Amundsen Sea Em- 
bayment for a 3-D viscosity structure. Panels are the same as Fig. S7, 
but for slices at 600, 1200 and 2400 km depth. 

Figure S9. Comparison of viscosity sensitivity kernels for sea- 
level and relativ e sea-lev el observations at Barbados for a 1-D 

viscosity structure. Panels are the same as Fig. S5, but now the 
observation site is at Barbados and the width of inset map is 20 ◦. 

Figure S10. Comparison of viscosity sensitivity kernels for sea- 
le vel and relati ve sea-le vel observ ations at Barbados for a 1-D vis- 
cosity structure. Panels are the same as Fig. S9, but for slices at 600, 
1200 and 2400 km depth. 

Figure S11. Comparison of viscosity sensitivity kernels for sea- 
le vel and relati ve sea-le vel observ ations at Barbados for a 3-D vis- 
cosity structure. Panels are the same as Fig. S5, but now we have 
used our filtered and bounded 3-D viscosity inference (Fig. 2 ) and 
the width of inset map is 20 ◦. 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad455#supplementary-data
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Figure S12. Comparison of viscosity sensitivity kernels for sea-
e vel and relati ve sea-le vel observ ations at Barbados for a 3-D vis-
osity structure. Panels are the same as Fig. S11, but for slices at
00, 1200 and 2400 km depth. 

Figure S13. Comparison of viscosity sensitivity kernels for sea-
e vel and relati ve sea-le vel observ ations at Andenes,Norw ay for a
-D viscosity structure. Panels are the same as Fig. S5, but now the
bservation site is at Andenes, Norway and the width of inset map
s 30 ◦. 

Figure S14. Comparison of viscosity sensitivity kernels for sea-
e vel and relati ve sea-le vel observ ations at Andenes, Norw ay for a
-D viscosity structure. Panels are the same as Fig. S13, but for
lices at 600, 1200 and 2400 km depth. 

Figure S15. Profile A–A’ Comparison of viscosity sensitivity
ernels for sea-level and relative sea-level observations at Andenes,
orway for a 1-D viscosity structure. A radial slice along profile
–A’ through the viscosity sensitivity kernels for ( a ) an absolute

ea-le vel observ ation at 10 ka,( b ) an absolute sea-le vel observ ation
t 0 ka and ( c ) a relative sea-level measurement at 10 ka. The
ocation of this profile is shown on the bottom centre map, which
s centred on the observations site (cyan circle). In the radial cross-
ections the black dashed line shows the 670 km discontinuity.
bove this discontinuity the values of the kernel correspond to

he colour scale in the lower-left corner. Those values in the lower
antle are coloured using the colour scale in the lower-right corner.
he colour scales are chosen to symmetrically span the full range of

elati ve sea-le vel viscosity sensiti vity kernel in these two regions and
hus, regions of the sea-level sensitivity kernels may be saturated. 

Figure S16. Comparison of viscosity sensitivity kernels for sea-
e vel and relati ve sea-le vel observ ations at Andenes, Norw ay for a
-D viscosity structure. Panels are the same as Fig. S5, but now we
ave used our filtered and bounded 3-D viscosity inference (Fig. 2 )
nd the width of inset map is 30 ◦. 

Figure S17. Comparison of viscosity sensitivity kernels for sea-
e vel and relati ve sea-le vel observ ations at Andenes, Norw ay for a
-D viscosity structure. Panels are the same as Fig. S16, but for
lices at 600, 1200 and 2400 km depth. 

Figure S18. Relative sea-level viscosity sensitivity kernels for
-D and 3-D viscosity structure. Slices at 150 and 300 km depth
hrough the viscosity sensitivity kernels for a relative sea-level ob-
ervation on at Andenes, Norway (cyan circle) dating to 10 ka. The
rst column shows the sensitivity kernel obtained when assuming
ur 1-D viscosity model (Section 5.1 and Fig. S4) and the second
olumn shows the sensitivity kernel obtained when assuming our
ltered and bounded 3-D viscosity inference (Fig. 2 ). It is this 3-D
iscosity structure that is shown in the third column and regions
here the amplitude of the sensitivity kernel are less than 0.1 per

ent of the maximum amplitude of the kernel are shaded in grey.
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Crawford et al. 2016 ). 

Crawford et al. ( 2018 ) extended the work of Al-Attar & Tromp
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hydrostatic equilibrium. Nevertheless, the expected departure from
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Under the assumption that water mass is conserved between the oce

˙SL = − 1 
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( ̇u · ∇� + φ̇) + 
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g A 
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∂M 

C( ̇u · ∇� + φ̇) dS − ρi 

ρw A 
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∂M 

where dots are used to denote time deri v ati ves and the variables are 
with gravitationally self-consistent sea-level change and shoreline m
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(
u̇ , ̇φ| u 

′ , φ′ ) − ρw 
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∂M 
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u̇ · ∇� + φ̇ − 1 
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C( ̇u · ∇� + φ̇) d

= 

∫ 
M S 

2 μ0 

[
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ṁ + 

1 

τ
( m − d ) = 0 . 

Here, the internal variable m contains the memory of past deform
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hat rely on iterati vel y solving the sea level equation (e.g. Mitrovica
nd Crawford et al. ( 2018 ) derive coupled evolution equations that
rically with an explicit time-stepping scheme and are ideally suited

m, the solid Earth is assumed to undergo quasi-static deformation,
brium. Pre viousl y, it has been assumed to be spherical, isotropic,
ter core, a viscoelastic mantle, and an elastic lithosphere. In our

asticall y and allow the lithosphere to be defined b y the extent of
 4 ). In addition, we assume that deformation in viscoelastic regions
e both common assumptions in GIA studies (Whitehouse 2018 ),
es can also be implemented within our strategy (as discussed in

3 ) to include gravitationally self-consistent sea-level change with
 and ice sheets are suf ficientl y thin such that they can be represented
al oceans and continents violates the model’s initial condition of
rostatic pre-stessed field due to realistic lateral heterogeneity will 
 are neglected (Dahlen & Tromp 1999 ). It is also assumed that the
iring their surface to lie along the same gravitational equipotential.
d ice sheets, the rate of sea-level change is 
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d in Table A1 . The reduced weak form of the forward GIA problem
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First, and foremost, eqs ( A1 ) and ( A2 ) are a non-iterative formulation for gravitationally self-consistent sea-level change with shoreline 
migration. The non-linearity of shoreline migration, due to the interplay of ocean height and solid Earth deformation, is captured through 
dependence of the ocean function, C , on the ocean height, SL and the ice thickness, I . Note that this rate formulation does not yet include 
rotation, which is the subject of ongoing work. It is our expectation that rotation will have a minor and long-w avelength ef fect on the viscosity 
sensitivity kernels because it is composed primarily of a spherical harmonic degree-two and order-one signal (e.g. Han & Wahr 1989 ; Milne 
& Mitrovica 1998 ). In addition, rotation is not required to develop an adjoint-based recalibration scheme for initial sea level nor is it required 
to initially explore inversion strategies for imaging 3-D mantle viscosity (Lloyd et al. in prepration). 

Eq. ( A2 ) forms the core of the forward GIA problem and consists of the elasto-gravitational terms within A ( ̇u , ̇φ| u 

′ , φ′ ) , the surface-load 
changes due to the ice sheets and ocean are manifested within the second and four th integ ral ter ms, and the viscous response of the system 

within the third integral term. As written, all terms containing the unknown deformation field components, 
{
u̇ , ̇φ

}
, are on the left-hand side 

and the right-hand side contains the integral terms that are readily calculated or known. Since these terms are linear with respect to u̇ and 
φ̇, eq. ( A2 ) has the schematic form A ̇x = b , which means that the time deri v ati ves of the deformation fields can be obtained by solving a 
set of linear equations. Finally, time derivatives of sea level and the internal variables can be directly calculated from their stated evolution 
equations and, in this manner, the whole system can be time-stepped. 

A2 The adjoint GIA problem 

Analagous to the previous subsection, we do not review the full derivation of adjoint GIA equations presented in Crawford et al. ( 2018 ), but 
rather go over the essential ideas behind their deri v ation in a schematic manner. We then state the form of the adjoint equations and briefly 
discuss their structure, as well as explaining how the rele v ant sensiti vity kernels are deri ved. 

Let the vector, U , denote the state of the physical system and a vector, P , the underlying model parameters. The state vector U is defined 
over an interval t ∈ [ t 0 , t 1 ], while P may also have an explicit time dependence. We suppose that the forward problem governing the physics 
is posed as an initial-value problem 

U̇ − g( U, P ) − F = 0 , U ( t 0 ) = U 0 , (A4) 

where g is a given function of U and P , while F describes the forcing of the system. This equation is assumed to have a unique solution, U , 
for any appropriate value of P . 

We also consider a scalar-valued objective function , F ( U , P ), which could be an observation (e.g. sea level at a specific location and 
time) or the misfit between predictions and observations. The explicit dependence of F on the model vector P would, in practice, be due 
to regularization terms within the misfit, which might seek to dampen or smooth the solution. By solving the forward problem, the state of 
the system U becomes an implicit function of the model parameters P , the initial state U 0 and the system forcing F and can be written as 
U = 

ˆ U ( P , U 0 , F) . The corresponding value of F then depends on P and U 0 alone and, to illustrate this fact, we define the reduced functional 

ˆ F ( P , U 0 ) = F 

[ 
ˆ U ( P , U 0 , F) , P 

] 
. (A5) 

Our goal is to differentiate the function, ˆ F , with respect to the model parameters, P and initial conditions, U 0 . This procedure is equi v alent 
to differentiating F ( U , P ) with respect to P , subject to the constraint that U satisfies the stated initial value problem. To achieve this task, we 
apply the method of Lagrange multipliers and so introduce the Lagrangian 

L ( U, U 

′ , P , U 0 , U 

′ 
0 ) ≡ F ( U, P ) −

∫ t 1 

t 0 

〈
U̇ − g( U, P ) − F , U 

′ 〉 dt − 〈
U ( t 0 ) − U 0 , U 

′ 
0 

〉
. (A6) 

Here, 〈 · , ·〉 denotes an appropriate inner product for state vectors, U 

′ is a time-dependent Langrange multiplier associated with the differential 
equation for U , and U 

′ 
0 is a time-independent Lagrange multiplier linked to the initial conditions. The Lagrange multiplier theorem states that 

D P 
ˆ F ( P , U 0 ) = D P L ( U, U 

′ , P , U 0 , U 

′ 
0 ) , (A7) 

D U 0 
ˆ F ( P , U 0 ) = D U 0 L ( U, U 

′ , P , U 0 , U 

′ 
0 ) , 

D F ˆ F ( P , U 0 ) = D F L ( U, U 

′ , P , U 0 , U 

′ 
0 ) , 

subject to the following conditions holding: 

D U ′ L ( U, U 

′ , P , U 0 , U 

′ 
0 ) = 0 , D U ′ 0 L ( U, U 

′ , P , U 0 , U 

′ 
0 ) = 0 , D U L ( U, U 

′ , P , U 0 , U 

′ 
0 ) = 0 . (A8) 

The first two conditions, stating that L is stationary with respect to the Lagrange multipliers, simply require that the state vector solves the 
gi ven initial v alue problem. The final condition, howe ver, gi ves rise to new equations that must be satisfied by the Lagrange multipliers. To 
demonstrate this aspect, we note that for any variation δU to the state vector, we must have ∫ t 1 

t 0 

〈
δU , H 

′ 〉 d t + 

∫ t 1 

t 0 

〈
δU , U̇ 

′ + [ D U g ( U, P ) ] ∗ U 

′ 〉 d t + 

〈
δU ( t 0 ) , U 

′ ( t 0 ) + U 

′ 
0 ) 

〉 − 〈
δU ( t 1 ) , U 

′ ( t 1 ) 
〉 = 0 , (A9) 

where the first term involving H 

′ arises through variation of F with respect to U . Note that, to isolate δU within the second integral, an 
integration by parts has been performed and the definition of the adjoint (indicated by the superscript ∗) of a linear operator has been applied. 
In order for this relationship to hold for arbitrary δU , we see that U 

′ must satisfy the following differential equation 

U̇ 

′ + [ D U g( U, P ) ] ∗ U 

′ + H 

′ = 0 , (A10) 
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subject to the terminal condition U 

′ ( t 1 ) = 0, while we also have U 

′ 
0 = U 

′ ( t 0 ) . 
As it is more usual to work with initial value problems, a new variable U 

† can be introduced through 

U 

† = T U 

′ , (A11) 

where we have introduced a time reversal operator by 

( T U )( t) = U ( t 1 − t + t 0 ) . (A12) 

Here, we note that the terminal condition on U 

′ at t 1 is mapped to an initial condition on U 

† at t 0 . Having made this definition, we see that U 

† 

satisfies the differential equation 

U̇ 

† − T [ D U g( U, P ) ] ∗ T U 

† + H 

† = 0 , (A13) 

where equi v alentl y H 

† = T H 

′ . Closer examination of eq. ( A13 ) re veals that time is re versed onl y for [ D U g ( U , P )] ∗ relati ve to other terms, 
which all share a superscript † . In other words, the first appearance of T reverses the direction of time, while the second appearance returns 
the flow of time to its original direction. Similarly, the initial condition is transformed to U 

† ( T 0 ) = 0 and we also see that U 

† ( t 1 ) = U 

′ 
0 . It is 

conventional to call U 

† the adjoint state vector and the above equations the adjoint problem , which are driven by the fictitious adjoint forcing, 
H 

† . Finally, we note that the structure of the adjoint problem (eq. A13 ) is very similar to that of the forward problem (eq. A4 ) and, in such 
instances, solutions for U 

† can often be obtained using the same numerical scheme as the forward problem. 
Calculation of the deri v ati ve of ˆ F with respect to P and/or U 0 requires us to solve: (1) the forward problem for the state vector U and (2) 

the closely related adjoint problem for the adjoint state U 

† , with this latter problem depending on the state vector both through the adjoint 
force, H 

† , and, for non-linear forward problems, through the linear operator D U g ( U , P ). Having solved these problems, we can use eq. ( A7 ) 
to obtain the deri v ati ve of ˆ F with respect to P , U 0 or F . For example, the first-order change in ˆ F due to a perturbation δP to the model 
parameters, δU 0 to the initial conditions, and δF to the system forcing, is given by 

δ ˆ F = 〈 D P F ( U, P ) , δP 〉 + 

∫ t 1 

t 0 

〈
[ D P g ( U, P )] ∗T U 

† , δP 

〉
dt + 

〈
U 

† ( t 1 ) , δU 0 

〉
. + 

∫ t 1 

t 0 

〈
U 

† , δF 

〉
dt (A14) 

Here, the first term on the right-hand side typically arises due to regularization and the second term contains the interaction of the forward 
and adjoint simulations. It is notable that the choice of objective function, F , enters into the adjoint problem only through the adjoint forcing 
H 

† . This aspect means that minimal changes are required to apply the theory to new types of measurements or misfit functions. 
Following on from this mathematical schematic, the appropriate Lagrangian for the GIA problem (eq. 78 of Crawford et al. 2018 ) is given 

by 

L = F − ρw g 

∫ 
∂M 

[ SL ( t 0 ) − SL 0 ] SL 

′ ( t 0 ) dS + ρi g 

∫ 
∂M 

[ I ( t 0 ) − I 0 ] I 
′ ( t 0 ) dS 

+ 

∫ t 1 

t 0 

A ( ̇u , ̇φ| u 

′ , φ′ ) −
∫ 

M S 

2 μ0 

[
ṁ : m 

′ + 

1 

τ
( d − m ) : ( d 

′ − m 

′ ) 
]

dV − ρw g 

∫ 
∂M 

˙SL SL 

′ dS 

−ρw 

g 

∫ 
∂M 

[
u̇ · ∇� + φ̇ − 1 

A 

∫ 
∂M 

C( ̇u · ∇� + φ̇) dS 

]
[ gS L 

′ + C ( u 

′ · ∇� + φ′ )] dS − ρi g 

∫ 
∂ M 

( ̇I c − İ ) I ′ dS 

+ ρi 

∫ 
∂M 

(1 − C) ̇I c 

[
u 

′ · ∇� + φ′ − 1 

A 

∫ 
∂ M 

[ gSL 

′ + C( u 

′ · ∇� + φ′ )] dS 

]
d S d t, (A15) 

where again, descriptions of the variables can be found in Table A1 . Here, the second term on the right-hand side imposes the prescribed 
initial sea level, SL 0 , the third term imposes the prescribed ice thickness, I 0 and the remainder is the time integrated weak form of the forward 
GIA problem. Although all time-dependent variables are e v aluated at time t , when working with the Lagrangian , we will find it useful to 
introduce the adjoint state variables (eqs A11 and A12 ). In order to more easily recognize their time reversal, we define the adjoint time, t † = 

t 1 − t + t 0 , in which the subscripts 0 and 1 are the initial and final time of the forward simulation, respectively. 
Crawford et al. ( 2018 ) derived the adjoint equations for the GIA problem using the third condition of eq. ( A8 ) and the introduction of the 

adjoint state variables (eqs A11 and A12 ). The resulting adjoint equations are solved for unknowns ( SL 

† , ̇u 

† , ̇φ† ), which are comparable to 
those in the forward equations (eqs A1 and A2 ), and take the form 

˙SL 

† = − ḣ 

† 
SL 

ρw g 
− Ċ 

† 

g 

[
u̇ 

† · ∇� + φ̇† − 1 

A 

† 

∫ 
∂M 

[
gSL 

† + C 

† ( ̇u 

† · ∇� + φ̇† ) 
]

dS 

]
, (A16) 

and 

A ( ̇u 

† , ̇φ† | u 

′ , φ′ ) − ρw 

g 

∫ 
∂ M 

[
u̇ 

† · ∇� + φ̇† − 1 

A 

† 

∫ 
∂M 

C 

† ( ̇u 

† · ∇� + φ̇† ) dS 

]
C 

† ( u 

′ · ∇� + φ′ ) dS 

= 

∫ 
M S 

2 μ0 

τ
( d 

† − m 

† ) : d 

′ dV + 

∫ 
∂M 

(
ḣ 

† 
u · u 

′ + ḣ 

† 
φ · φ′ 

)
dS 

− 1 

g 

∫ 
∂M 

ḣ 

† 
SL 

[
u 

′ · ∇� + φ′ − 1 

A 

† 

∫ 
∂M 

C 

† ( u 

′ · ∇� + φ′ ) dS 

]
dS, (A17) 

respecti vel y. The adjoint internal variable satisfies 

ṁ 

† + 

1 

τ

(
m 

† − d 

† ) = 0 , (A18) 
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which is much like the internal variable in the forward problem (eq. A3 ). 
A description of these variables is provided in Table A1 , but we note that ḣ 

† 
∗ are the adjoint loads, which are equi v alent to H 

† in the 
mathematical schematic. In this work, only ḣ 

† 
SL is non-zero because we consider only measurements directly related to sea level and not, 

for example, those for solid-Earth displacements or gravity in isolation. In eq. ( A17 ), the adjoint sea-level load, ḣ 

† 
SL , interacts with the test 

functions u 

′ and φ′ , giving rise to two adjoint loads that act on the solid Earth and the gravitational field. Finally, we have similarly written 
eq. ( A17 ) such that the unknown components of the deformation field, 

{
u̇ 

† , ̇φ† }, are on the left-hand side and the right-hand side contains the 
integ ral ter ms that are readily calculated or known. 

Although the right-hand side of the reduced weak form of the forward and adjoint equations (eqs A2 and A17 , respecti vel y) are different, 
both are of the form A ̇x = b . Thus, solutions for the adjoint deformation field rate, 

{
u̇ 

† , ̇φ† }, can be obtained using the same numerical 
scheme (Appendix B ), but the elements of b will be different. In so doing, we can readily calculate the adjoint deviatoric stress, similar to 
the forward problem. Obtaining the adjoint sea level is, ho wever , more challenging because eq. ( A16 ) is potentially singular and so cannot be 
easily integrated. Crawford et al. ( 2018 ) presents a method for integrating this equation that circumvents these singularities by introducing 
auxiliary variables. 

As we have shown in the schematic example, by solving the forward equations (eqs A1 and A2 ) and adjoint equations (eqs A16 and A17 ), 
we can use their results to calculate the desired deri v ati ve of ˆ F with respect to P (i.e. sensitivity kernel). In order to obtain the form of this 
deri v ati ve, we must perturb the Lagrangian with respect to the desired model parameter. In this study, we require expressions for the sensitivity 
kernels for initial sea level, SL 0 , and viscosity, η. Thus, b y v arying the Lagrangian in eq. ( A15 ) with respect to SL 0 and by introducing the 
adjoint state variables (eqs A11 and A12 ), we find 〈 

D SL 0 
ˆ F , δSL 0 

〉 
= 

∫ 
∂M 

K SL 0 δS L 0 dS , (A19) 

where we have defined the sensitivity kernel for initial sea level to be 

K SL 0 = ρw gSL 

† 
0 ( t 

† 
1 ) . (A20) 

Note that this sensitivity kernel depends only on the adjoint sea level at the final time, t † 1 , of the adjoint simulation. 
Likewise, we obtain the viscosity sensitivity kernel by recalling that τ = η/ μ0 for a Newtonian fluid and differentiating eq. ( A15 ) with 

respect to η to find 〈 
D η

ˆ F , δη
〉 

= 

∫ t 1 
t 0 

∫ 
M S 

1 
2 η τ : τ † δ ln η d V d t (A21) 

where τ = 2 μ0 ( d − m ) is the deviatoric stress, τ † is the corresponding adjoint field and δ ln η = 

δη

η
is a viscosity perturbation. The sensitivity 

kernel for a viscosity perturbation is therefore 

K ln η = 

∫ t 1 

t 0 

1 

2 η
τ : τ † dt. (A22) 

We see that K ln η depends on the interaction between the forward and adjoint deviatoric stresses for the full duration of the simulation. Finally, 
we note that both sensitivity kernel equations (eqs A20 and A22 ) are equivalent to those determined by Al-Attar & Tromp ( 2013 ) and 
Crawford et al. ( 2018 ). 

A P P E N D I X  B :  N U M E R I C A L  I M P L E M E N TAT I O N  F O R  1 - D  R A D I A L  V I S C O S I T Y  

M O D E L S  

A detailed description of the numerical implementation of the forward and adjoint GIA equations can be found in the Appendix of Crawford 
et al. ( 2018 ), but for completeness, we briefly re vie w how eqs ( A2 ) and ( A17 ) are solved at an arbitrary instant in time when adopting a 1-D 

radial viscosity model. In this scenario, we numerically solve eqs ( A2 ) and ( A17 ) by representing scalar , vector , and tensor fields within and on 
the solid Earth using generalized spherical harmonics to capture their angular dependence (Gelfand & Shapiro 1956 ; Burridge 1969 ), while 
their depth dependence is described by a 1-D radial mesh of spectral-elements that each consist of fiv e Gauss–Lobatto–Le gendre interpolation 
points. Using these basis functions, eqs ( A2 ) and ( A17 ) both decouple into spheriodal and toroidal subsystems, in which the latter are not 
excited by radial surface loads for a laterally homogeneous Earth. Unlike in the viscoelastic loading problem of Al-Attar & Tromp ( 2013 ), 
ho wever , the tw o spherical har monic components (radial and consoidal) and the g ravitational per turbation do not decouple for each spherical 
har monic deg ree- l and order- m . This behaviour occurs because the ocean load (i.e. the second integ ral ter m on the left-hand side of eqs A2 
and A17 ) depends on the entire u̇ and φ̇ fields. Therefore, instead of solving the simple form 

A l ̇x lm 

= b lm 

, (B1) 

for each l , we must solve the more complex form 

A l ̇x lm 

+ g lm 

( ̇x ) = b lm 

, (B2) 

which requires an iterative solution (see appendix b of Crawford et al. 2018 ). Note that the matrix A l and the vectors ẋ lm 

, g lm , and b lm are 
defined identically to those of eq. ( 14 ). We assume that the solution for the deformation field, 

{
u̇ , ̇φ

}
, has converged when the difference in 

subsequent solutions is less than 1 . 0% of the difference between the final and initial solution. For completeness, recall that the sea-level rate, 
˙SL , is obtained directly from eq. ( A1 ) and the adjoint sea-level rate, ˙SL 

† 
, is obtained from eq. ( A16 ) following a change of variab les, w hich 

is described in Crawford et al. ( 2018 ). This setup just leaves the matter of time-stepping the forward and adjoint GIA simulations. 
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Tab le A1. Variab les used in the forward and adjoint formalism. 

Variable Meaning Variable Meaning 

Mathematical symbols, superscripts, subscripts 

∗̇ Time deri v ati ve ∇ Gradient 
∗′ Test function ∗† Adjoint variable 
· Dot product : Contraction 
M S Union of the solid regions dV Volume integral 
∂M Surface dS Surface integral 

Time parameters 

t Forward time t † Adjoint time ( t † = t 1 − t + t 0 ) 
t 0 Initial time (e.g. 26 ka) t 1 Final time (e.g. 0 ka) 

Ice-sheet parameters 

I Ice thickness ρi Density of ice 
I 0 Initial ice thickness I c Current ice thickness 

Sea-level parameters 

SL Sea level ρw Density of water 
C Ocean mask A Area of Ocean 
SL 0 Initial sea level 

Solid-Earth parameters 

u Displacement φ Gravitational potential perturbation 
� Gravitational potential of the reference model g Magnitude of gravitational acceleration 
μ0 Unrelaxed shear modulus A Bilinear form associated with 

elasto-gravitational forces 
η Viscosity τ Maxwell relaxation time 
m Internal memory variable d Deviatoric strain tensor 
τ Deviatoric Stress 

Select adjoint parameters 

ḣ SL , u ,φ Adjoint loads: 
sea level, displacement, gravitation 

perturbation 

K η,SL 0 Sensitivity kernel: 
viscosity, initial sea level 

Inspection of eqs ( A1 ), ( A2 ), ( A16 ) and ( A17 ) reveals that the deformation field 
{
u̇ , ̇φ

}
, and sea-level rate, ˙SL , depend only on the current 

state of the system. Thus, an explicit time-stepping scheme is straightforward to implement and we, as in Al-Attar & Tromp ( 2013 ) and 
Crawford et al. ( 2018 ), use the second order Runge–Kutta method (Press et al. 1986 ) and set the time step to be approximately half of the 
minimum Maxwell relaxation time , τ , which is a suitable choice for an explicit method (Bailey 2006 ). The inclusion of low viscosity regions 
( ∼10 18 Pa ·s; e.g. Whitehouse et al. 2019 ; Russo et al. 2022 ; and Fig. S2) in these simulations, ho wever , requires a time step much smaller 
than a year and gives rise to challenges both in terms of run-time and memory usage. Thus, it is clear that explicit time-stepping schemes are 
not ideal for simulations spanning tens of thousands of years or more and future improvements to our numerical implementation might be 
obtained through the use of implicit time-stepping schemes. 

A P P E N D I X  C :  V I S C O S I T Y  S E N S I T I V I T Y  K E R N E L S  F O R  G I A  

C1 Approaches to computing Fr échet deri v ati ves f or GIA 

Until recentl y, ef for ts to deter mine Fr échet deri v ati ves (i.e. sensiti vity ker nels) for GIA obser v ations relied on the finite dif ference method 
to approximate this deri v ati ve. This approach requires discretizing the solid Earth (i.e. the mantle) into n cells or vo xels , w hose viscosity 
structure can be written as a vector (ln η1 , . . . , ln ηn ), where we use log-viscosities for convenience. As discussed in Section 2.1 , we can define 
a scalar-valued functional, F , based on the solution of the forward problem. The value of F depends implicitly on the viscosity parameters, 
and so F = F (ln η1 , . . . , ln ηn ). We can also form deri v ati ves of F with respect to each of the parameters, such that the i th component of this 
discretized gradient is 

∂ F 

∂ ln ηi 
. (C1) 

The value of this partial derivative can be approximated using the finite-difference formula 

∂ F 

∂ ln ηi 
( ln η1 , . . . , ln ηn ) ≈ F ( ln η1 , . . . , ln ηi + δ ln η, . . . , ln ηn ) − F ( ln η1 , . . . , ln ηi , . . . , ln ηn ) 

δ ln η
(C2) 
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where δln η is a suf ficientl y small perturbation (i.e. step size) to the i th viscosity parameter for this first-order expression to be accurate. 
In this manner, the discretized gradient can be obtained from n + 1 forward calculations: one for the unperturbed model and n additional 
calculations where each model parameter is perturbed in turn. 

In practice, the finite-difference approximation has been implemented for GIA in a variety of ways ranging from individual normal modes 
(Mitrovica & Peltier 1991a , b ) to directly observable surface observations (e.g. Mitrovica & Peltier 1993 , 1995 ; Milne et al. 2004 ; Paulson 
et al. 2005 ; Wu 2006 ). In these studies, n is chosen with computational limitations in mind and hence perturbations to the model parameters 
are generally applied over a v o xel that is larger than the discretization of the mesh on which the simulation is performed. This necessity limits 
the resolution of the Fr échet deri v ati ve because the sensitivity of an observation to parameters within a subregion of the perturbed v o xel 
cannot be isolated (Wu 2006 ). Fur ther more, the amplitude of the model perturbation is also important, as it must be suf ficientl y small that the 
finite-difference method yields a robust approximation of the desired deri v ati ve, but not too small that numerical instabilities dominate the 
result. These two details (i.e. v o xel size and perturbation amplitude) are therefore important considerations when using the finite difference 
method. By way of comparison, since the adjoint method does not require defining a v o xel size or a viscosity perturbation amplitude, it 
negates these potential limitations and thus, the kernel’s accuracy and resolution is simply limited by the mesh resolution of the forward and 
adjoint GIA simulation. 

Earl y ef forts to compute viscosity Fr échet deri v ati ves for GIA observ ations were methodolo gicall y limited to 1-D radial kernels that 
describe the influence of viscosity purely as a function of depth. The first complete kernel was calculated by Mitrovica & Peltier ( 1991b ), who 
built on the work of Peltier & Andrews ( 1976 ) by providing the formalism relating viscosity to both the decay times and modal amplitudes. 
This approach, ho wever , does not include the the ocean load and therefore avoids solving the sea-lev el equation. To circumv ent this limitation, 
Mitrovica & Peltier ( 1993 ) devised a fully numerical approach using a finite difference approximation of the Fr échet deri v ati ve that has 
since been applied to compute 1-D viscosity kernels for observations of gravitational change (Mitrovica & Peltier 1993 ), relative sea level 
(Mitrovica & Peltier 1995 ) and three-component solid Earth deformation (Milne et al. 2004 ). In these latter studies, kernels were constructed 
by perturbing viscosity by ∼−0.587 in log space (i.e. ε ′ = 0.1; Mitrovica & Peltier 1993 ) within either 22 or 32 radial layers spanning the 
mantle. Mitrovica & Peltier ( 1995 ) also showed that the linear approximation of the Fr échet deri v ati ves appears to be accurate when using 
viscosity perturbation within a factor of 10 of the reference model, which is consistent with later results obtained from the adjoint method 
(Crawford et al. 2018 and Appendix C2 ). 

The transition from 1-D viscosity Fr échet deri v ati v es that hav e purel y radial sensiti vity to 3-D kernels, which also express an observation’s 
sensitivity to lateral changes in viscosity, began with the work of Paulson et al. ( 2005 ) and ushered in a period of subtle differences in definitions 
within the literature that can lead to some confusion. In their study, Paulson et al. ( 2005 ) present the first images illuminating which regions of 
the mantle influence the vertical solid Earth deformation at a given location, x ′ between t 0 and t 1 . Although their implementation is identical 
to the finite-difference approach, the quantity computed, ε, for each individual mantle v o xel, m i ∈ M , is different and is given by 

ε( m i ) = 

∫ t 1 
t 0 

| u i ( x ′ , t) − u a ( x ′ , t) | dt ∫ t 1 
t 0 

| u i ( x ′ , t) | dt 
. (C3) 

Here, u i ( t ) is the solid Earth uplift rate at time t for an isoviscous reference viscosity model and u a is the uplift rate at the same time for a 
viscosity model that has been perturbed within that discrete mantle v o xel, m i . Although successful in delineating a sensitivity region , the 
quantity computed is not, strictly speaking, the Fr échet deri v ati ve. Full 3-D Fr échet deri v ati ves, preserving both their amplitude and polarity, 
were later presented by Wu ( 2006 ) for observations of relative sea level, rate of solid Earth deformation and gravitational change at discrete 
points in space and time. In that work and subsequent regional studies focusing on the Fennoscandian ice sheet (Steffen et al. 2007 ; Steffen & 

Wu 2014 ), sensitivity kernels relative to a 1-D reference viscosity model were constructed using a finite difference approximation, such that 

K m 

= 

δp 

δm �V 

. (C4) 

Here, δp is the difference in the predicted observation for the perturbed versus unperturbed simulation, δm is the model perturbation and � V 

is the v o xel v olume, w hich serves to balance variations in v o xel size. In the GIA literature, the terms in the denominator of eq. ( C4 ) are often 
non-dimensionalized, so that the kernel units are consistent with those of the observ ation. Furthermore, b y comparison to eq. ( C2 ), we see 
that δp is equi v alent to F (ln η1 , . . . , ln ηi + δln η, . . . , ln ηn ) − F (ln η1 , . . . , ln ηi , . . . , ln ηn ) and δm is equi v alent to δln η. The global analysis 
of Wu ( 2006 ) used a longitudinally symmetric ice sheet and Earth system, in which the latter is composed of 36 mantle v o xels distributed 
as 4 layers with depth and 9 regions in colatitude. This configuration results in relati vel y coarse kernels that average over much of the detail 
found in our study and discussed in Sections 6.3 and 6.4 , hindering direct comparison of sensitivities. Meanw hile, v o xels in regional studies 
are naturally smaller but lack global coverage throughout the mantle (Steffen et al. 2007 ; Steffen & Wu 2014 ). In the studies of Wu ( 2006 ) and 
Steffen et al. ( 2007 ), the viscosity within these v o xels was perturbed by a factor of ∼0.332 in log space. In Steffen & Wu ( 2014 ), ho wever , 
the magnitude of each viscosity perturbation was set by the local difference between the 1-D reference viscosity model (U1L1 V1; Steffen 
et al. 2006 ) and a 3-D viscosity inference of seismic tomography (U3L1 V1; Steffen et al. 2006 ). Notably, this choice results in some v o xels 
being perturbed by > 3 orders of magnitude relative to 4 × 10 20 Pa ·s in the uppermost mantle. Such viscosity perturbations are quite large 
and may therefore lead to inaccuracy of the linear approximation of the Fr échet deri v ati ve in those v o xels. While this issue does not detract 
from the goals of Steffen & Wu ( 2014 ), it leads to errors when using the Fr échet deri v ati ve to predict the change in a functional with respect 
to a perturbation of the viscosity structure (Appendix C2 ). 

The studies of Wu et al. ( 2010 ) and others (Steffen et al. 2012 ; Steffen & Wu 2014 ; Li et al. 2018 ) use a different definition of sensitivity 
that results in 2-D maps. These maps are calculated for a particular time by differencing the predicted observations from two forward GIA 

simulations that adopt a 1-D reference viscosity model and 3-D viscosity inference. This definition is inconsistent with our study and the 
work described above because the resulting map: (1) is not for a single observation, but rather all surface locations combined and (2) is a 2-D 

field defined at the surface of the Earth as oppose to a 3-D field defined within the mantle. Most importantly, these sensitivities are not true 
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Fr échet deri v ati ves and are in fact equi v alent to our F ig. 3 (c), w hich shows the total sea-le vel change dif ference between simulations adopting 
a 3-D and 1-D viscosity structure. 

C2 Comparison of finite difference and adjoint methods 

Here we compare the value and predictive accuracy of the viscosity Fr échet deri v ati ve for a single mantle v o xel obtained from the finite 
difference and adjoint methods. To do so, we must relate the discrete deri v ati ve of eq. ( C2 ) to its continuous counterpart. We recall from 

Section 2.1 that 

δF = 

∫ 
M 

K ln ηδ ln η dV , (C5) 

where δF is the first-order change in F due to the viscosity perturbation, δln η and K ln η is the viscosity Fr échet deri v ati ve. The two approaches 
can be linked by differentiating with respect to ln ηi , yielding 

∂ F 

∂ ln ηi 
= 

∫ 
M 

K ln η
∂ ln η

∂ ln ηi 
dV . (C6) 

For our chosen parametrization, the partial deri v ati ve ∂ ln η
∂ ln ηi 

is equal to one within the i th v o xel and zero elsewhere. We note that this formula 
is equally applicable to other model parametrizations, such as splines. Importantly, eq. ( C6 ) indicates that the partial derivatives of F with 
respect to a given discretization can be obtained by performing suitable integrals of the continuous Fr échet deri v ati ve. 

We proceed by considering a relative sea-level observation covering the period 10–0 ka from the Seychelles and a single v o xel spanning 
the global sublithospheric upper mantle (100–600 km depth). We note, ho wever , that any arbitrary v o xel could have been chosen and that 
our selection was made for simplicity. In this example, the forward and adjoint GIA simulation setups are identical to those of Section 5 and 
they adopt our 1-D radial viscosity model [Litho (0–100 km): ∼1.5 × 10 26 Pa ·s; UM (100–670 km): 5 × 10 20 Pa ·s; LM (670–2891 km): 5 ×
10 21 Pa ·s]. The resulting sensitivity kernel (Figs 10 g–i) along with eq. ( C6 ) is used to determine the change in relative sea level with respect 
to the viscosity perturbation of the v o xel, ∂ RSL 

∂ ln ηi 
. In the case of the finite difference approach, we perform additional forward simulations for 

a range of potential viscosity perturbations ( δln ηi ∈ [10 −4 , 10 2 ]) that are applied to the global sublithospheric upper mantle voxel. These 
results are used to estimate the partial deri v ati ve, ∂ RSL 

∂ ln ηi 
, based on eq. ( C4 ). Here, δp = δRSL has units of meters, δm = δ ln ηi = 

δηi 
η

is unitless, 

and � V is 2.569 × 10 20 m 

3 , such that the partial deri v ati ve has units of m 

−2 and is consistent with the partial deri v ati ve obtained using the 
adjoint method. Finally, using the partial derivative, ∂ RSL 

∂ ln ηi 
, obtained from the adjoint method and a subset of those estimated using the finite 

difference approach, we predict the change in relative sea level across the same range of viscosity perturbations by evaluating 

δR SL = 

∂ R SL 

∂ ln ηi 
δ ln ηi . (C7) 

Fig. C1 summarizes our findings for the relati ve sea-le vel observ ation from the Se ychelles and highlights two ke y points. First, we see that 
predictions of the change in relative sea level from the adjoint method (black line) agree well with simulation results (blue pluses) when the 
viscosity model is modified by a perturbation of up to 0 in log space. Beyond this threshold, the quality of the prediction rapidly worsens, 
confirming the non-linear dependence of relative sea level on the underlying viscosity structure. Similar predictability limits for absolute sea 
level are found by Crawford et al. ( 2018 ) and have been reported for other GIA observables (Mitrovica & Peltier 1993 , 1995 ). This example 
also begins to demonstrate how if the viscosity perturbation is too small [i.e. log ( δln ηi ) = −4] numerical instabilities may dominate the 
result. 

Secondly, Fig. C1 (b) demonstrates how the amplitude of the viscosity perturbation influences the estimated partial deri v ati ve for the same 
sublithospheric upper mantle voxel and, by extension, the associated predictions for the change in relative sea level (red dashed lines). We 
observe that for viscosity perturbations greater than 1 in log space, the finite difference estimate of the partial deri v ati ve becomes increasingly 
poor, as does the predicted change in relative sea level. This result underlines the importance of choosing a reasonable viscosity perturbation 
and illustrates the potential pitfalls of adopting overly large values, consistent with the findings of Mitrovica & Peltier ( 1993 ) and others (e.g. 
Wu 2006 ; Steffen et al. 2007 ). Finally, the non-linearity indicated by these results are consistent with those of Section 6.4 that also demonstrate 
how weak and stiff viscosity regions can significantly alter the amplitude and structure of the sensitivity kernels at regional scales. 
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Figure C1. Comparison of the finite difference and adjoint approaches to calculating Fr échet deri v ati ves. Results show the magnitude of the relative sea-level 
change as a function of viscosity perturbation for an observation covering the period 10–0 ka from the Seychelles. (a) The solid black line is determined by 
eqs ( C6 ) and ( C7 ) along with the sensitivity kernel, K ln η obtained from the adjoint method (Figs 10 g–i). The slope of this line is the partial deri v ati ve, ∂ RSL 

∂ ln ηi 
, 

obtained from eq. ( C6 ) and corresponds to the global sublithospheric upper mantle voxel. The plus symbols show the change in relative sea level obtained 
from a forward GIA simulation that adopts the corresponding perturbed viscosity model. (b) The right-hand panel is the same, but with the addition of three 
red dashed lines determined using the finite difference method (eq. C4 ) for viscosity perturbations of 0.1, 10 and 100 (left to right). The vertical dotted lines 
show the viscosity perturbation adopted by various other studies that have used the finite difference method to calculate Fr échet deri v ati ves (Mitrovica & Peltier 
1993 ; Wu 2006 ; Steffen et al. 2007 ). 

C © The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access 
article distributed under the terms of the Creative Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/ ), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 
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