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SUMMARY

A key initial step in geophysical imaging is to devise an effective means of mapping the
sensitivity of an observation to the model parameters, that is to compute its Fréchet derivatives
or sensitivity kernel. In the absence of any simplifying assumptions and when faced with a
large number of free parameters, the adjoint method can be an effective and efficient approach
to calculating Fréchet derivatives and requires just two numerical simulations. In the Glacial
Isostatic Adjustment problem, these consist of a forward simulation driven by changes in ice
mass and an adjoint simulation driven by fictitious loads that are applied at the observation
sites. The theoretical basis for this approach has seen considerable development over the last
decade. Here, we present the final elements needed to image 3-D mantle viscosity using a
dataset of palaeo sea-level observations. Developments include the calculation of viscosity
Fréchet derivatives (i.e. sensitivity kernels) for relative sea-level observations, a modification
to the numerical implementation of the forward and adjoint problem that permits application
to 3-D viscosity structure, and a recalibration of initial sea level that ensures the forward
simulation honours present-day topography. In the process of addressing these items, we build
intuition concerning how absolute sea-level and relative sea-level observations sense Earth’s
viscosity structure and the physical processes involved. We discuss examples for potential
observations located in the near field (Andenes, Norway), far field (Seychelles), and edge of
the forebulge of the Laurentide ice sheet (Barbados). Examination of these kernels: (1) reveals
why 1-D estimates of mantle viscosity from far-field relative sea-level observations can be
biased; (2) hints at why an appropriate differential relative sea-level observation can provide
a better constraint on local mantle viscosity and (3) demonstrates that sea-level observations
have non-negligible 3-D sensitivity to deep mantle viscosity structure, which is counter to
the intuition gained from 1-D radial viscosity Fréchet derivatives. Finally, we explore the
influence of lateral variations in viscosity on relative sea-level observations in the Amundsen
Sea Embayment and at Barbados. These predictions are based on a new global 3-D viscosity
inference derived from the shear-wave speeds of GLAD-M25 and an inverse calibration scheme
that ensures compatibility with certain fundamental geophysical observations. Use of the
3-D viscosity inference leads to: (1) generally greater complexity within the kernel; (2) an
increase in sensitivity and presence of shorter length-scale features within lower viscosity
regions; (3) a zeroing out of the sensitivity kernel within high-viscosity regions where elastic
deformation dominates and (4) shifting of sensitivity at a given depth towards distal regions
of weaker viscosity. The tools and intuition built here provide the necessary framework to
explore inversions for 3-D mantle viscosity based on palaeo sea-level data.
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1 INTRODUCTION

Geophysicists have gone to great lengths to image Earth’s interior
using observations of seismic wave propagation (e.g. Nolet 2008;
Tromp 2019), gravitational (e.g. Sjoberg & Bagherbandi 2017) and
electromagnetic (e.g. Tikhonov 1950; Chave & Jones 2012) fields,
as well as its response to deformation by both internal (e.g. Pollitz
2001; Forte & Mitrovica 1996) and external forces (e.g. moon and
sun; Nakada & ichiro Karato 2012; Lau et al. 2017). In doing so,
they provide constraints on physical parameters that fundamentally
control the behaviour of our planet across a range of spatial and
temporal scales. With advancements in imaging techniques, com-
putational resources, and observational data sets, imaging of these
parameters has evolved from simple, spherically symmetric 1-D
models to increasingly complex 3-D structural models. Neverthe-
less, after nearly a century of research, imaging of Earth’s viscous
structure has remained restricted to 1-D radial models (e.g. Haskell
1935; Mitrovica 1996; Lau et al. 2016; Argus et al. 2021). These
models generally exploit observations of Glacial Isostatic Adjust-
ment (GIA), which is the viscoelastic deformation of the solid Earth
as well as changes to its gravitational field and rotational axis in re-
sponse to the evolving surface loads of the ice sheets and oceans.
This process is most reliably constrained by observations of palaco
sea level, but the use of these observations to image 3-D man-
tle viscosity has been hindered by a sparsity of data coverage, a
lack of appropriate standardization procedures (Khan et al. 2019),
and perhaps most importantly, the absence of an efficient inversion
scheme.

The influence of 3-D viscosity structure on GIA has been recog-
nized for the past few decades (e.g. Gasperini et al. 1990; White-
house 2018), but has seen an accelerated interest in recent years
driven by a desire to better understand the interactions between the
solid Earth and the cryosphere (e.g. Kaufmann et al. 2005; Gomez
et al. 2015; Whitehouse et al. 2019) or more broadly the hydro-
sphere (e.g. Wu 2006; Austermann et al. 2013; Li et al. 2020;
Bagge et al. 2021). The large range of viscosity heterogeneity
(~10"*—10% Pa-s) imaged by regional GIA studies (e.g. Nield
et al. 2014, 2016; Barletta er al. 2018; Austermann et al. 2020)
suggests that Earth’s viscous response occurs over timescales of
years to thousands of years and at length scales of tens to many
thousands of kilometres. Simulations show that such lateral varia-
tions in viscosity can give rise to complex patterns of deformation
that are not readily reproduced by a spherically symmetric vis-
cosity model unless the ice history is substantially modified (e.g.
Kaufmann et al. 2005; Klemann et al. 2007). Likewise, the 3-D
viscosity structure of subduction zones can influence local rela-
tive sea level and have a profound impact on its interpretation and
hence any associated implications for ice history (Austermann et al.
2013). Thus, there is a clear need for an accurate representation of
Earth’s 3-D viscous structure in order to both improve GIA mod-
els (their past and/or future predictions) and also to better under-
stand how GIA observations probe Earth’s viscous structure. This
need has created two main avenues for constraining Earth’s 3-D
viscosity structure. Those studies that infer viscosity from other
physical parameters, such as seismic wave speeds, and those that
image viscosity directly from observations of viscous processes
like GIA. Here, we utilize the former and will establish the latter in
Lloyd et al. (in preparation), but note the two need not be mutually
exclusive.

Inference-based approaches primarily convert seismic tomogra-
phy models of shear-wave speed to viscosity by way of temperature
using constitutive relationships and material parameters derived

from laboratory experiments (e.g. Priestley & McKenzie 2013; Ya-
mauchi & Takei 2016; Richards et al. 2020; Austermann et al.
2021; Ivins et al. 2021; Paxman et al. 2023). Although such ap-
proaches benefit from the high resolution and broad spatial coverage
of seismic tomography, they also inherit the assumptions and un-
certainties associated with the tomographic inversion, constitutive
relationships and material parameters. Accounting for these effects
is non-trivial and, in many instances, impractical, but can be com-
bated with calibration schemes that identify inferences satisfying
a number of well-known, independent solid Earth observations (Li
et al. 2018; Richards et al. 2020; Ivins et al. 2021). Nevertheless,
assumptions concerning the physical state of the mantle and hence
the origin of the seismic anomalies (e.g. temperature, composition,
fluids, melt, etc.), as well as the deformation mechanisms that are
activated by the transfer of seismic energy (e.g. dislocation creep,
diffusion creep, grain boundary sliding, etc.), result in a wide range
of plausible viscosity inferences (Ivins et al. 2021; Hazzard et al.
2023). This aspect is further compounded due to the fact that GIA
models include not only a solid Earth response (i.e. viscoelastic
structure and rheology), but also an ice history that drives this re-
sponse and hence, the two are strongly intertwined. Thus, there is
still no guarantee that the resulting 3-D viscosity inference will
provide a better fit to GIA observations due to errors in either com-
ponent of the GIA model (e.g. Bagge et al. 2021).

In this study, we begin exploring how and by which deforma-
tional processes palaco sea-level observations sense Earth’s viscos-
ity structure, and how these sensitivities are coupled to the assumed
viscosity structure and ice history. Despite the potential inaccuracy
of combining reconstructed ice histories with an independent vis-
cosity structure, we elect to use an inference of 3-D mantle viscosity
in combination with a published ice history. For these purposes, we
apply the adjoint method and build off the work of Al-Attar & Tromp
(2013) and Crawford et al. (2018). This effort ultimately lays the
foundation for imaging 3-D mantle viscosity directly from GIA ob-
servations and, to aid in its development, we will draw parallels to,
and borrow from, seismology. We begin by briefly explaining why
the adjoint method is an appropriate tool for this problem and pro-
vide a summary of the necessary equations for defining and calculat-
ing viscosity and initial sea-level Fréchet derivatives (Section 2), a
topic that is covered in more detail within Appendix A. In Section 3
we expand the rate formulation of the forward and adjoint GIA prob-
lem to consider relative sea-level observations and lateral variations
in viscosity. Next, we discuss how the adjoint method can be used
in a gradient based optimization scheme to recalibrate the initial sea
level and ensure simulation compatibility with known present-day
sea level (Section 4). Following this theoretical and methodological
development, we discuss the forward and adjoint GIA simulation
setup and a new inference of 3-D viscosity obtained by applying the
approach of Richards et al. (2020) and Austermann et al. (2021)
to the shear wave speeds of GLAD-M25 (Bozdag et al. 2016; Lei
et al. 2020; Section 5). Using these new tools, we demonstrate the
initial sea-level recalibration and examine how the evolution of sea
level is influenced by different viscosity models and ocean-loading
histories (Sections 6.1 and 6.2). This demonstration is followed
by a discussion of viscosity Fréchet derivatives for observations
of both absolute and relative sea level that focuses on identifying
how physical processes (e.g. ocean siphoning and expulsion) are
manifested, their big-picture implications, and how these two ob-
servation types differ in their sensitivity to viscosity (Section 6.3).
Through these simple examples that adopt a 1-D radial viscosity
model, we aim to begin building the necessary intuition and skills
for both observational and theoretical scientists to read viscosity

20 Aenuer 0 uo Jasn As1onlun [euoieN uelensny ‘g4 Buipiing ‘Areiqi seizusiy 9y Aq 0£00%1.2/6€ | 1/Z/9€Z/a101e/1B/wod dno oiwspese//:sdyy wous papeojumoq



Fréchet derivatives, much like seismologists read seismograms. We
then examine the effect of a more realistic 3-D viscosity model
on the viscosity Fréchet derivatives for observations of relative sea
level (Section 6.4). Finally, the methods, results, and intuition built
herein are used to inform a companion paper (Lloyd et al. in prepa-
ration) that explores strategies for imaging 3-D mantle viscosity
with synthetic palaeo sea-level data.

2 REVIEW OF FRECHET DERIVATIVES
FOR THE GIA PROBLEM

The first step towards data-driven inversions of GIA observations
is to determine how a potential observation changes in response to
a change in the relevant model parameters. This quantity is called
a Fréchet derivative and can be efficiently calculated using the ad-
joint method. Al-Attar & Tromp (2013) and Crawford et al. (2018)
developed the necessary mathematical theory linking a rate formu-
lation of the GIA problem to the adjoint method and in Appendix A
we provide a detailed review of this work and its key assumptions.
In addition, Appendix A includes a table defining the variables of
the forward and adjoint GIA problem (Table Al). This review is
accompanied by a schematic overview of the adjoint method that
sheds light on the derivation of the adjoint equations, including the
origin of the fictitious loads and the time-reversed nature of the
simulation, as well as the derivation of Fréchet derivatives for rele-
vant model parameters (e.g. viscosity). We encourage the interested
reader to consult Appendix A, but in the interests of brevity, restrict
ourselves here to a conceptual description of Fréchet derivatives and
a review of the relationships required to calculate them with respect
to viscosity and initial sea level.

2.1 A conceptual description of Fréchet derivatives

For simplicity, let us first consider the viscosity, n, of Earth’s mantle
as the only free model parameter. For a given viscosity structure,
we can solve the forward GIA problem in order to obtain all pos-
sible surface observables and evaluate a scalar-valued functional,
F, which could be an observation (e.g. sea level, SL) or a suitable
designed misfit function. Thus, the value of F implicitly depends on
the viscosity, 1, and can be written as F(n).

If a viscosity perturbation, §1, is applied to the adopted viscosity
structure, we can to first-order write

F(n+5n)=F(n)+/Kln,,SlnndV+~-~, (1)
M

where 8 Inn = 22, dV indicates a volume integral over the region,
M, and --- indicates higher-order terms associated with the perturba-
tion §7. Note that the use of In 17 as a model parameter rather than n is
a choice that is made for convenience. The function, Ky, ,, is known
as the Fréchet derivative of F* with respect to In n. Furthermore, it
is also common and useful to rewrite eq. (1) as

SF:/ Kiny8Inndv, @
M

where it is understood that §F is the first-order change in the func-
tional F in response to a perturbation, §ln#. Written in this form,
we can intuitively understand the meaning of the Fréchet derivative
(i-e. Kin ). In this example, positive (negative) values of Kj,, indi-
cates that an increase in viscosity at those locations within the Earth
will lead to an increase (decrease) in F' at the observation site. The
corresponding size of the change in F' depends on the magnitude
of K, . Thus, by plotting the Fréchet derivative, K, ,,, for a given
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functional we can visualize, to first-order accuracy, how its value is
influenced by a change in viscosity.

In the event that more than one model parameter is considered,
the Fréchet derivative of F with respect to each of the model pa-
rameters can be introduced. For example, in addition to viscosity,
we can include initial sea level, SLy, as a further model parame-
ter (Section 4). In the forward GIA problem, the initial sea level
enters as an initial condition describing sea level (i.e. the negative
of topography) at the beginning of the simulation. Our functional,
F, then has an implicit dependence on both 1 and SL, and we can
generalize eq. (1) to

F(n+68n,SLy+8SLy) = F(n,SL0)+/ K, InndV
M

+ Ksp,6SLodS + -+, 3)
aM

where K, is the Fréchet derivative of F with respect to the initial
sea level and dS indicates a surface integral over the region M.
Recall that we write and retain only first-order terms, hence cross-
terms between §ln n and 6SL, are represented by ---. Nevertheless, it
is important to remember that both Fréchet derivatives depend on the
unperturbed values of the model parameters (i.e. n and SL,). Thus,
their physical interpretation remains the same, but it is understood
that they express the linearized sensitivities to one model parameter
when the other parameters are held fixed.

2.2 Fréchet derivatives in GIA

A simple, albeit brute-force, approach to determining these Fréchet
derivatives is the finite-difference method and it is this method that
has historically been used to compute kernels (Appendix C1). In this
approach, the model parameters are first expressed using a finite-
dimensional basis that is either deemed to be physically appropriate
or has been accepted for pragmatic reasons. Supposing that there are
n-degrees of freedom in this basis, a cost of n + 1 individual GIA
simulations are required to compute a single Fréchet derivative: one
simulation for the unperturbed problem and » additional simula-
tions that individually perturb each of the model parameters in turn
(e.g. Mitrovica & Peltier 1991b; Paulson et al. 2005; Wu 20006).
Given that n is large for GIA simulations that attempt to capture
realistic variations in 3-D viscosity structure, that these simulations
are computationally expensive (e.g. Latychev et al. 2005), and that
within an iterative inversion, these Fréchet derivatives need to be
computed many times, it is clear that such an approach is impracti-
cal. Instead, we follow the lead of seismic tomography (e.g. Tromp
et al. 2004; Fichtner et al. 2006) and use the adjoint method to
calculate Fréchet derivatives with just two numerical simulations:
a forward simulation driven by the ice history and a time-reversed
adjoint simulation driven by fictitious loads applied at the observa-
tion sites at appropriate times (Al-Attar & Tromp 2013; Crawford
et al. 2018). For completeness, we show in Appendix C2 that these
two approaches obtain the same result and that the resulting Fréchet
derivatives can be used to predict the change in the functional (e.g.
relative sea level) for a given model perturbation (e.g. viscosity).

As shown in Appendix A2, the Fréchet derivative for a given
model parameter (e.g. viscosity) can be obtained by perturbing the
Lagrangian (eq. A15) with respect to that parameter. If we assume
a Maxwell rheology, then the Fréchet derivative with respect to Inn
takes the form

t 1
Ky = / —r Tl de, 4)
" 1) 2”
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where # is the time corresponding to the beginning of the simula-
tion and ¢, is its end. The : denotes the double-dot product between
second-order deviatoric stress tensors from the forward, T, and ad-
joint, ¥, simulations. Although evaluation of eq. (4) is straightfor-
ward, it can become cumbersome in practice because the deviatoric
stress at each time step of the forward simulation must be saved and
therefore requires significant memory or disk space.

In a similar manner, we can obtain the initial sea-level Fréchet
derivative by perturbing the Lagrangian (eq. A15) with respect to
SLy, yielding

Ksi, = pugSLY (1)) 5)

where p,, is the density of water, g is the magnitude of gravitational
acceleration and SLI)(IIT ) is the adjoint sea level at the final time
step, tf, of the adjoint simulation. Note that this time is equivalent
to the initial time, #, of the forward simulation and that both Fréchet
derivative eqs (4) and (5) are equivalent to those determined by
Al-Attar & Tromp (2013) and Crawford et al. (2018).

Thus far, we have referred to K, as the Fréchet derivative, where %
indicates an arbitrary model parameter. More commonly, however,
when F is an observation, then K, is called the sensitivity kernel,
and when £ is a misfit function, then K, is termed the gradient or
more formally the gradient of the misfit function with respect to
the model parameter. We adopt this nomenclature throughout the
remainder of this study, but fallback on Fréchet derivative when the
nature of £’ is ambiguous.

Finally, the units of the Fréchet derivative, K,, directly depend
on the units of the functional, F, and they can be most easily ob-
tained by examining the expression for the first-order change in the
functional. To illustrate this aspect, let us allow F to be a sea-level
observation in units of meters and consider the viscosity sensitiv-
ity kernel, Ky, ,. By inspection of eq. (2), we see that the units of
this sensitivity kernel must be m~2. Similarly, if F is a L2 misfit
function with units of m? and we now consider the gradient of the
misfit function with respect to the initial sea level (eq. 5), then by
inspection of the surface integral in eq. (3), we see that the units of
the gradient are m~!. These two examples are exactly the units of
the viscosity sensitivity kernels discussed in Sections 6.3 and 6.4
and the gradient used in the iterative inversion for initial sea level
discussed in Sections 4 and 6.2. However, these units are not easily
obtained by inspection of eqs (4) and (5) because adjoint variables
need not have the same units as their forward variable counterparts
(e.g. T and t1). Instead the adjoint variable units depend on those
of the adjoint loads (Section 3.1 and Appendix A2) and ultimately
on those of the functional, F.

3 FURTHER DEVELOPMENT OF THE
RATE FORMULATION OF THE
FORWARD AND ADJOINT GIA
PROBLEM

The adjoint method has previously been used to calculate viscosity
sensitivity kernels for sea-level observations assuming a 1-D radial
viscosity structure (Crawford et al. 2018). In that study, only ob-
servations of sea level at a given location and instant in time were
considered and, for clarity, we refer to these as absolute sea-level
observations. Here we make two developments. First, the derivation
of the adjoint loads required by a fundamental observation of palaeo
sea level (i.e. relative sea level; Section 3.1). These observations are
always made and reported relative to present-day sea level (e.g. Khan
et al. 2019), and, rather than existing in an absolute reference frame,

are a measure of the change in sea level between the time of the sea-
level indicator’s emplacement, #os, and the present day, #,. We note
that relative sea-level observations serve as the building blocks for
related palaeo sea-level observations including the rate of sea-level
change, the timing of sea-level highstands or transgressions (e.g.
Nakada & Lambeck 1989), as well as relative sea-level curves and
spatiotemporal fields (e.g. Creel et al. 2022). Although understand-
ing how these more complex observations sense Earth’s viscosity
structure is important, we focus here only on the more fundamental
observations of absolute and relative sea level, their relationship,
and the influence of 3-D viscosity structure on sensitivity kernels
for relative sea-level observations. This leads to our second devel-
opment, which is the inclusion of lateral viscosity heterogeneity in
the forward and adjoint GIA simulations (Section 3.2).

3.1 Adjoint loads for sea-level observations

Thus far, we have not directly addressed the form of the fictitious
adjoint loads that drive the adjoint GIA simulations and allow us
to calculate sensitivity kernels for observations related to the solid
Earth, gravity, and sea level. The adjoint loads associated with these
observations, as demonstrated in Appendix A2, are obtained by tak-
ing the first order perturbation of the scalar-valued function, F(u, ¢,
SL), with respect to the forward variables and can be schematically
written as

tl . . .
SF = / / (hy - Su+ hydp + hs 8SL) dSdt, (6)
o JoM

where hy, fz¢ and /g, are the Fréchet derivative of F with respect
to solid Earth displacement (u), gravitational potential perturbation
(¢) and sea level (SL), respectively. This sum is then integrated
over the surface, 0M, and over the duration of the simulation from
tp to t;. Note that these Fréchet derivatives are defined to be the
time-derivative of some underlying functions, hy, /4, and kg . This
formulation is chosen to maximize the symmetry between the for-
ward and adjoint problems. We now derive the adjoint loads for
observations of absolute sea level and relative sea level. Although
the former is presented by Crawford et al. (2018), we begin by
rederiving it here in order to demonstrate how these two types of
observations are related, but also how they differ in the information
that they convey.

Following Crawford et al. (2018), as well as our generalized
discussion of the adjoint method (Appendix A2), we can determine
the adjoint loads by schematically perturbing the scalar-valued func-
tional F with respect to the state variables U. For an observation of
absolute sea level at a given location and time, SL(Xobs, fobs), this
leads to

3l
§F = / / SSL(X, 1)8(X — Xops)S(? — fobs) dS dt 7
tn Jom
where 8(X — Xops) and §(¢ — t,5) are Dirac delta functions centred at

the observation site, Xy, and time, z,ps. From this equation, we see
that the necessary functions defining the Fréchet derivatives are

l.lu =0,
hy =0,
sy = 8(X — Xops)S(t — tops), (®)

which are the values required by eqs (A16) and (A17) for an absolute
sea-level observation at a given point in space and time.
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We now undertake a similar procedure, but begin with the defi-
nition of relative sea level

RSL(Xobsv tobs) = SL(Xobsa tobs) - SL(Xobsv tp)v (9)

where ¢, is the present-day time, which is synonymous with ¢, in
our study. Again, we perturb F with respect to the state variables U,
which for a relative sea-level observation results in

SF— /-tl /‘ SSL(Xs t)[a(x _ Xobs)a(t - tobs)
n Jom

—8(X — Xobs)3(t — 1,)] dSdr (10)

From this equation, it readily follows that the necessary functions
are now

h, =0,
h¢=0,

hSL = §(X — Xobs )O(F — tobs) — (X — Xops)S(t — t[,). (11)

Examining eq. (11), we see that it is composed of two fictitious
loads of equal magnitude and opposite sign that are applied at times
fobs and 1,. By comparing it with eq. (8), we see that it fundamentally
consists of two absolute sea-level adjoint loads. Therefore, the sen-
sitivity kernels for relative sea-level observations can be obtained
in one of two ways: (1) by using both adjoint loads in a single ad-
joint simulation or (2) by using each adjoint load in an independent
adjoint simulation and then taking the difference of the resulting
absolute sea-level sensitivity kernels [i.e. Kgsi (Xobs» Zobs) — KsL(Xobss
1,)]. This property of superposition is routinely exploited in seismic
tomography and will be utilized in our companion paper to image
3-D viscosity using palaeo sea-level observations.

3.2 Numerical implementation of 3-D viscosity

The introduction of lateral viscosity heterogeneity adds some com-
plexity to solving the forward and adjoint GIA equations using a
pseudo-spectral method, which was previously identified and solved
by Martinec (2000). This complexity occurs in the first integral term
on the right-hand side of eqs (A2) and (A17), which describes the
viscous response of the system. A brief review of the numerical
implementation of these equations as described by Crawford et al.
(2018) is provided in Appendix B and we will invoke aspects of this
review in what follows.

Our implementation of lateral viscosity heterogeneity within the
forward and adjoint GIA simulations is discussed in Crawford
(2019) and in essence follows Martinec (2000). Here, we focus
on the viscous response as it appears in the reduced weak form of
the forward GIA problem, eq. (A2), but note that a similar integral
term also appears in the adjoint GIA problem, eq. (A17). These
integral terms are identical up to the exchange of the forward and
adjoint variables ({m, d} < {m', d'}; defined in Table Al), and
thus, are evaluated in the same manner. When adopting a 1-D radial
viscosity structure, we are required to evaluate

/R@ fm 2u(r )[—(d m): (d -

/ e 2u(r) (-
0

T(r) M,

m/):| dsdr = (12)

m) : d' dSdr,

where the shear modulus, u(r), and the Maxwell relaxation time,
771(r), being functions of only radius, , are brought outside of the
inner integral. Thus, the remaining terms within the inner angular
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integral can be expanded using generalized spherical harmonics and
evaluated using the appropriate orthogonality relations.

In contrast, if viscosity varies laterally, we have to consider the
more complicated expression

Re . / |
‘/0. /aM’ZM(i’)[m(d—m):(d_m)] dSdr =

Re

0 am, T 0, 9)

Since our numerical implementation only permits a 1-D radial elas-
tic and density structure, the shear modulus, 14(7), must remain only
a function of r. This assumption is reasonable since 3-D elastic
effects are generally small and with the largest deviations occur-
ring in regions of large load changes (Mitrovica et al. 2011; Durkin
et al. 2019). Thus, in order to accommodate lateral variations in
viscosity the Maxwell relaxation time, t(r, 6, ¢), now has an angu-
lar dependence indicated by {6, ¢ }. To evaluate this integral term,
we use a pseudo-spectral approach (e.g. Fornberg 1998; Kendall
et al. 2005) that performs certain operations in the spatial domain
(e.g. multiplication) and other operations in the spectral domain
(e.g. integration), while fast transformations are used to pass fields
between these two domains.

A consequence of eq. (13) and the lateral heterogeneity of the
Maxwell relaxation time, and hence viscosity, is that the spheroidal
components of the displacement no longer decouple from the
toroidal ones. This is because lateral variations in the Maxwell
time generate toroidal components within the viscoelastic relaxation
force applied at each time step. This situation is somewhat analo-
gous to the toroidal-poloidal coupling (note poloidal and spheroidal
are synonyms) that occurs within mantle in response to aspherical
Earth structure (e.g. Forte & Peltier 1987). We note, however, that
even in a laterally homogeneous Earth, the adjoint GIA problem can
also excite toroidal displacement through the presence of tangen-
tial surface tractions in the adjoint load, which for example occurs
for observations of horizontal solid Earth deformation. Thus, the
reduced weak form of both the forward and adjoint GIA problems
(eqs A2 and A17) may be schematically written for each spherical
harmonic degree-/ as two coupled sets of linear equations

Arx;, + g (X) = by, (14)
and
Ajx),, =bj,, (15)

where the superscripts s and ¢ denote the spheroidal and toroidal
subsystems, respectively. Again focusing on the reduced weak form
of the forward GIA problem, eq. (A2), the matrices A; are con-
structed from its first term, A, which is the Bilinear form associated
with the elasto-gravitational forces (Al-Attar & Tromp 2013; Craw-
ford et al. 2018). The vector Xj,, contains the unknown spheroidal
components, {U,m, Vims im }, while the unknown toroidal compo-
nent, W, is contained within the vector %j,,- Next, the vectors bj;,
contain the integral terms on the right-hand side of eq. (A2) and
contain the memory of the system and the forcing due to the ice-load
change, all of which are known or readily calculated. Finally, the
vector, g, (X), originates from the second integral term of eq. (A2)
that describes the radial forcing of the ocean and hence only arises
in the spheroidal subsystem. As discussed in Appendix B, we solve
eq. (14) iteratively and eq. (15) directly. In turn, solutions to these
systems of equations can be mapped back into the more familiar
spherical coordinate system [see appendix B of Crawford et al.
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(2018) or appendix C of Dahlen & Tromp (1999)]. Thus, by adopt-
ing these changes, we can now solve the forward and adjoint GIA
problem subject to either a 3-D viscosity structure, surface tractions
or both simultaneously at any given instant in time.

4 RECALIBRATION OF INITIAL SEA
LEVEL USING GRADIENT-BASED
OPTIMIZATION

Predictions of past or future sea level and topography, regardless of
the adopted Earth structure and ice history, should result in realistic
topography that matches the observed present-day topography. This
initial value problem is well-known within the GIA community and
is commonly addressed by iteratively updating the prescribed ini-
tial sea level by subtracting the difference between the predicted
and observed present-day sea level until the desired level of accu-
racy is achieved (e.g. Kendall ez al. 2005). Here, we take a different
approach that uses the adjoint method in combination with gradient-
based optimization (as suggested by Crawford et al. 2018). We will
find this approach particularly useful in future work that simultane-
ously updates multiple model parameters (e.g. mantle viscosity and
initial sea level; Lloyd ef al. in preparation). For now, we focus on
the basics of recalibrating the initial sea level for any set of Earth
and ice history models.

In our approach, each iteration, i, begins with a forward GIA
simulation that is initiated, in part, by the current estimate of initial
sea level and is followed by calculating the misfit at the present day,
1,, according to the function

1 : 2
T = 5 ‘[)M [SL;)rd(X’ 1) — SLobs(X, tp)] ds. (16)
Here, SLyq(X, 2,) and SLgs(X, £,) are the present-day predicted
and observed sea level, respectively, at position x € dM. We next
calculate the adjoint loads in the same manner as in Section 3.1, but
now by perturbing eq. (16) with respect to SLyq, yielding

hsp = [SLyqg(X, 1,) = SLons(X, 1,)] 82 — 1), a7

where again, /, and h¢ are zero. We see that the sea-level adjoint
load described by eq. (17) is nearly identical to that of eq. (8),
with the exception that it may have non-zero values globally and
is weighted by the difference between the predicted and observed
present-day sea level. It is this weighted adjoint load that drives the
adjoint GIA simulation in the initial sea-level recalibration and, due
to these weights, we now obtain the gradient of the misfit function
with respect to the initial sea-level, Dg;,J, through eq. (5). Note
that eq. (5) depends on the adjoint sea level at the final adjoint
time, tf , or equivalently at the the initial time, 7y, of the forward
GIA simulation. Thus, for each iteration we must complete the full
viscoelastic GIA simulation. This formulation is consistent with the
equations of Crawford ef al. (2018), but not their manuscript text
where, due to a typographic error, it is stated that only the elastic
adjoint problem needs to be solved. In the calculations of this study,
we use the correct expression as revised above.

With the gradient in hand, we can determine the search direc-
tion and step length necessary to find a new initial sea level that
minimizes the misfit function of eq. (16). Empirically, we have de-
termined that greater misfit reduction and a better overall match to
the present-day sea level can be obtained through a strategy that
starts with a low-pass filter of the gradient before retaining higher-
degree information in later iterations. Here, filtering is performed
in the spherical harmonic domain by applying a one-sided Hanning

taper as a function of degree-/, which has weights of

0<l<l
[1 — cos (NM>:| l. < l<§ Inax (18)

Imax—le

w(l) =

S L= =

otherwise

where /.« is the maximum spherical harmonic degree and /. is the
cut-off degree (i.e. corner frequency). In the example of Section 6.2,
Imax 1s 64 and we set /. to 60 when smoothing is applied to the
gradient. We will discuss these choices further in that section. For
now, we need only distinguish the smoothed or, in more general
terms, preconditioned gradientas P Dy, J', where P is an arbitrary
preconditioning operator.

The gradient, Ds;,J', and preconditioned gradient, P Dg; 7",
are used to determine the search direction using the method of
steepest descent (Cauchy 1847). We have also explored using the
conjugate gradient method instead (Polak & Ribiere 1969), but leave
discussion of this algorithm to the companion paper. In the steepest
descent method, the search direction, v/, is equal to the negative of
the preconditioned gradient. Thus, updates to the initial sea level,
SLy, can be obtained using

SLEY = SLE + ay’, (19)

where « is the step length, for which we seek the optimum value
that minimizes the misfit in eq. (16).

We determine the optimal step length for o by assuming that the
misfit along the projection of the search direction forms a parabola,
similar to the approach used by Tape ef al. (2007) for seismic
tomography. Given that at @ = 0, we already have the misfit, J',
and can readily obtain the slope of this parabola by calculating the
directional derivative along the search direction (i.e. {Ds;, J", %)),
it only remains to determine the misfit for a trial step length. Here,
this length is taken to be twice the x-intercept of the line described
by the misfit and slope at « = 0, which is

ji
= 27— 20
“ (Dsy JH ) 20

The resulting initial sea-level, SL + o, v, is then used to perform
another forward GIA simulation and we again calculate the misfit,
J,,- With these pieces of information, we can now determine a
unique quadratic curve and its minimum value

(Ds1, T ¥')o?
2(T0 = TJi + (Dst, T ) )

o =

2n

which is a suitable step length that can be used to obtain a revised
estimate for the initial sea level, SLf)“, using eq. (19). In the above
procedure, it is critical to distinguish between the gradient, D, J",
and preconditioned gradient, P Dy, J', since a failure to do so
may cause the parabolic assumption to break down and result in an
ineffective estimate of the optimal step length. The degree to which
this occurs depends on the extent that the gradient is modified
by preconditioning. Finally, this procedure is iteratively repeated
until the convergence criteria is met. For recalibration of initial
sea level, we choose the convergence criteria to be \SL;rd(x, tp) —
SLgps(x, 2,)| < 0.5mVx € M (i.e. the total difference between the
predicted and observed present day sea level is less than 50 cm),
based on the GIA benchmark study of Martinec et al. (2018).
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5 FORWARD AND ADJOINT GIA
SIMULATION SETUP

Throughout this study, we perform forward and adjoint GIA sim-
ulations at spherical harmonic degree 64 and for a duration of
26 kyr (i.e. 26 ka to 1950 CE) using a spatially filtered version
of the ICE6G(VM5a) ice history model (Fig. 1; Argus et al. 2014;
Peltier et al. 2015). The initial sea level (i.e. topography) at 26 ka
is prescribed and is either SLg or SLS, which are detailed in Sec-
tions 6.1 and 6.2. For the solid Earth structure, we use the 1-D elastic
and density structure of PREM (Dziewonski & Anderson 1981) in
combination with either a filtered and bounded 3-D viscosity struc-
ture (Fig. 2) or its 1-D radial representation (Section 5.1; Fig. S4).
Our 3-D viscosity structure is based on the shear-wave speed model
of GLAD-M25 (Bozdag et al. 2016; Lei et al. 2020) and its creation
will be discussed in detail in Section 5.1. Nevertheless, a couple
of pertinent details are relevant to the setup of the forward and ad-
joint GIA simulations. For example, both viscosity models extend
to Earth’s surface and thus, our simulations do not formally in-
clude an elastic lithosphere. Instead the extent of the high-viscosity
regions in combination with the load change characteristics deter-
mines which regions will be dominated by elastic deformation. In
this manner, simulations containing lateral viscosity variations also
include effects due to lateral changes in lithospheric thickness.

Given the low resolution of the forward and adjoint GIA simu-
lations in comparison to the resolution of the input fields (e.g. 3-D
viscosity structure, surface topography and ice thickness), we spa-
tially filter these data sets to avoid aliasing and minimize the Gibbs
phenomenon due to truncation of the spherical harmonic series to
degree 64. This low-pass filtering is achieved by applying a one-
sided Hanning taper as a function of degree, / (eq. 18), to each of
the fields in the spectral domain. Unlike our previous application
of eq. (18), the cut-off degree /. is set equal to 0, such that degree
0 (i.e. the spherical mean) is the only degree to retain its original
amplitude.

As discussed in Appendix B, the simulations use an explicit time-
stepping scheme and this time step is approximately one half of the
smallest Maxwell relaxation time. Thus, for our 1-D viscosity struc-
ture, this time step is 50 yr, while for our unmodified 3-D viscosity
inference (Fig. S2) the required time step would be approximately
0.05 yr. In the latter case, a single forward or adjoint simulation
on a single compute node using OpenMP would take approximately
two weeks and require more than a terabyte of memory to store the
needed forward variables for the viscosity kernel calculation (eq. 4).
This requirement exceeds our computational resources and, due to
the exploratory nature of this study, we instead choose to limit the
minimum viscosity to 2 x 10!° Pa-s. With this modification, the
time step becomes 1 yr and the run time is ~18 hr, however cal-
culating the viscosity sensitivity kernels (eq. 4) remains memory
intensive. Thus, we save the deviatoric stress tensor every 50 yr,
which we find to be sufficient when numerically integrating eq. (4)
using the rectangle rule.

5.1 An inference of 3-D mantle viscosity from
GLAD-M25

We construct a new inference of 3-D mantle viscosity based on a
similar approach to Austermann et al. (2021) and using the Voigt av-
erage shear-wave speeds of GLAD-M25 (Fig. 1; Bozdag et al. 2016;
Lei et al. 2020). GLAD-M25 is the second generation of a global
adjoint tomography model (Bozdag er al. 2016), whose starting
point consists of the S362ANT seismic model of Kustowski et al.
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(2008) combined with crustal structure from CRUST2.0 (Bassin
2000). Its construction over the course of 25 iterations minimizes
the phase misfit of three-component body and surface waves (peri-
ods of 17-25 and 40-250 s, respectively), as well as reflections and
overtones, from 1480 earthquakes. This minimization is achieved
using gradient-based optimization in combination with the adjoint
method and the computational package SPECFEM3D_GLOBE (Ko-
matitsch & Tromp 2002a, b), which allows for accurate and efficient
calculation of both synthetic three-component seismograms and the
gradient of the misfit function with respect to the model parameters.
Although a formal assessment of the model’s resolution remains a
challenge, point-spread function tests (Fichtner & Trampert 2011)
as well as comparisons with other global and regional tomogra-
phy models suggest that GLAD-M25 is slowly beginning to close the
gap between global and regional studies in densely sampled areas
(Lei et al. 2020). Nevertheless, we acknowledge that the absence
of surface waves at periods less than 40 s suggests that the upper-
most mantle may be less well resolved than in other global upper
mantle tomography models (e.g. Schaeffer & Lebedev 2013). We
note, however, that no current tomography model has the required
global coverage and the required resolution to capture the shallow
fine-scale structure that will be important for GIA modelling.

Our inference of 3-D mantle viscosity consists of three com-
ponents: (1) an inverse calibration scheme for the upper mantle
(Richards et al. 2020), (2) a traditional inference for the transition
zone and lower mantle (Austermann ez al. 2021) and (3) a merging
of the two domains, which includes near-surface corrections and
additional rheological constraints. In all instances, we relate shear-
wave speed and attenuation to steady-state diffusion creep viscosity
or viscosity perturbations by way of temperature. In so doing, we
account for both linear anharmonic (Kumazawa & Anderson 1969)
and non-linear anelastic (Cammarano ez al. 2003; Karato 1993) ef-
fects, with the latter being more pronounced in warm regions where
temperatures approach the solidus. Failure to account for anelastic-
ity can lead to overestimates of absolute mantle temperatures and, by
extension, underestimates of absolute mantle viscosity by an order
of magnitude (Austermann et al. 2021). Furthermore, we assume
that shear-wave speed variations relative to a reference model are
due to temperature alone. Although this assumption is incorrect, it is
common (e.g. Cammarano et al. 2003; Priestley & McKenzie 2006,
2013; Richards et al. 2020) and perhaps reasonable to assume that
temperature effects dominate at global scales given uncertainties
in material properties of the mantle (e.g. composition, grain size,
and melt fraction; Schutt & Lesher 2006; Connolly & Khan 2016;
Dannberg et al. 2017; Debayle et al. 2020)) and the rheological
mechanisms controlling anelasticity (Jackson & Faul 2010; Ya-
mauchi & Takei 2016). Equally important uncertainties arise from
the tomographic models, whose imaged wave speeds are influenced
by the inverse problem setup (e.g. choice of parametrization, reg-
ularization, and simplifying assumptions), the seismic phases of
interest and their sensitivity to Earth structure, as well as the spatial
and temporal distribution of sources (e.g. noise, earthquakes, etc.)
and seismic stations. To manage and minimize these uncertainties,
at least for the upper mantle, we use the approach of Richards et al.
(2020).

The inverse calibration scheme of Richards ez al. (2020) is rooted
in the experimentally derived anelastic parametrization of Yamauchi
& Takei (2016), which includes the effect of pre-melting (Takei et al.
2014). It also follows the methodological philosophy of Priestley
& McKenzie (2013) that any mapping of one mantle parameter
to another should satisfy a range of average mantle properties for
which there exists independent constraints. Thus, given a suite of
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Figure 1. Ice thickness changes. Maps of low-pass filtered ice-thickness change based on the ICE6G(VM5a) ice-history model (Argus et al. 2014; Peltier et al.
2015) between (a) 260 ka, (b) 26-10 ka, (c) 10-0 ka, (d) 26-2.5 ka and (e) 2.5-0 ka. Panels (a), (b) and (c) are most appropriate for understanding the load
changes associated with absolute sea-level observations at 10 and 0 ka and the relative sea-level spanning 10-0 ka (Sections 6.3 and 6.4). Likewise, panels (a),
(d) and (e) are most appropriate for understanding the load changes associated with absolute sea-level observations at 2.2 and 0 ka and the relative sea-level

spanning 2.2-0 ka (Section 6.4).
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Figure 2. Filtered and bounded 3-D viscosity structure. Depth slices through the filtered and bounded version of our inferred 3-D viscosity model (the
unmodified version is shown in Fig. S2). Viscosity anomalies at each depth are relative to the 1-D radial model described at the end of Section 5.1 and shown in
Fig. S4. This 3-D model is used in the forward and adjoint simulations of Section 6.2 to determine a target present-day sea level for recalibration of the initial
sea level. It is also used in Section 6.4 to explore the effect of 3-D structure on viscosity sensitivity kernels.

experimentally determined parameters (Table 1) that capture the
dependence of anelasticity on frequency, depth and homologous
temperature, we can determine a set of globally averaged mantle
material properties that satisfy existing independent constraints. An
important advantage of this calibration procedure is that it ensures

the non-linear decrease in shear-wave speeds and attenuation near
the solidus are faithfully reproduced, regardless of the assumed rel-
ative contribution of temperature, composition, grain size and melt
fraction to the observed seismic parameters. Since the non-linear
behaviour is ultimately controlled by the diffusion creep viscosity
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Table 1. Experimentally determined anelasticity parameters (left) from Yamauchi & Takei (2016) and the globally averaged mantle material properties (right)

determined by the inverse calibration scheme of Richards et al. (2020).

Experimentally determined parameters

Globally averaged mantle material properties

Variable Value Variable Value

Ap 0.664 o 80.82 GPa

g 0.38 u ~0.02 GPa °C™!

T 6x 1073 u 2292

B(e) ~0 logio1, 23.301 [logio (Pa-s)]
Aporo(w) ~0 E, 545 kJ mol ™!

y 5 Vs 9.633 x 10~7 m> mol !
T 0.94 oL 0.8634 °C km™!

rp ~0

and directly constrained by the seismological observations, our
steady-state viscosity estimates are remarkably robust to uncer-
tainty in these thermodynamic variables (see Text S1 in Hazzard
et al. 2023).

In our mapping, as in Richards et al. (2020), we make use of
four independent constraints and evaluate each with an L2 misfit
function that is weighted by uncertainties and is appropriately nor-
malized by the sample size. The observations consist of shear-wave
speeds from oceanic regions of GLAD-M25 that are stacked with
respect to lithospheric age and depth relative to sea level, as well
as inferences of mantle properties (temperature, attenuation and
bulk viscosity). Sampling of these observations is performed in an
identical manner to Richards ef al. (2020) unless otherwise stated.
The first constraint compares the oceanic stack of shear-wave speed
to those predicted by the plate-cooling model of Richards e al.
(2018), in which we assume an ambient potential temperature of
1333 °C and an equilibrium plate thickness of 133 km. Secondly,
we require the inferred temperature between 225 and 400 km depth
beneath oceanic regions to be isentropic on average (i.e. both adia-
batic and reversible) and to follow the 1333 °C isentrope (Shorttle
et al. 2014). Thirdly, the inferred average attenuation structure ob-
tained from the relationships of Yamauchi & Takei (2016) must
converge to the 1-D attenuation structure of QL6 (Durek & Ekstrom
1996), the same profile used in the construction of GLAD-M25, be-
neath old oceanic lithosphere. Finally, we require that the average
of the inferred steady-state diffusion creep viscosity between 225
and 400 km depth be approximately 3 x 10?° Pa-s (Lau ef al.
2016). These four misfit functions are subsequently combined us-
ing weighting factors of 10, 1, 2 and 2, respectively, in order to
calculate total misfit.

To determine the optimal set of globally averaged mantle mate-
rial properties that satisfy the above constraints, we initially perform
a coarse parameter sweep in order to bound the global minimum.
The parameter set with the lowest misfit value is then chosen as the
starting point in a conjugate gradient scheme (Powell 1964; Press
et al. 1986) that seeks to further converge on the global minimum.
The resulting parameters can be found in Table 1 and are used to
convert upper mantle shear-wave speeds of GLAD-M25 into temper-
ature and absolute steady-state diffusion creep viscosity down to
400 km depth.

At greater depths, we lack sufficient observational constraints
to apply the inverse calibration scheme of Richards et al. (2020)
and must fall back on more traditional approaches. Here, we follow
Austermann et al. (2021) and convert shear-wave speed variations
relative to the 1-D radial average of GLAD-M25 into temperature
variations about a quasi-steady state mantle geotherm (Schuberth
et al. 2009). The anharmonic component of this conversion assumes
a pyrolitic mantle composition and makes use of the Perple X

Gibbs free-energy minimization software (Connolly 2005) along
with the thermodynamic database of Stixrude & Lithgow-Bertelloni
(2011). An anelastic correction is made based on the 1-D attenuation
model @5, associated relationships from Cammarano et al. (2003),
and a mantle solidus from Andrault et al. (2011). Finally, these
temperature variations are mapped to viscosity variations following
Steinberger & Calderwood (2006).

‘We now merge these two domains in order to produce a spherical
3-D viscosity model of the mantle and crust that has a high-viscosity
lid, an average viscosity of 5 x 10?° Pa-s in the sublithospheric
upper mantle, and an average viscosity of 5 x 10?' Pa-s in the lower
mantle. In doing so, we address the fact that GLAD-M25’s topology
geometrically includes ellipticity, surface topography and internal
seismic discontinuities (e.g. the Moho; Bozdag et al. 2016; Lei et al.
2020), as well as the fact that updates to the model may cause crust
or mantle wave speeds to exceed the extent of the a priori prescribed
and fixed Moho. To determine crustal viscosities we first identify
the extent of a a crust-like region. For the upper bound we ignore
the topography and bathymetry present in GLAD-M25 and define the
upper surface to coincide with present-day sea level. Meanwhile,
the depth of the crust-like region is taken to be either the Moho
prescribed by the starting model of GLAD-M25 (i.e. CRUST2.0;
Bassin 2000) or the depth of the minimum temperature inferred by
the inverse calibration scheme. Next, we identify the lithosphere—
asthenosphere boundary (LAB) as the 1175 °C isotherm, similar
to Austermann et al. (2021), and find that the spherical average
depth of this boundary is ~100 km. Furthermore, the volumetrically
averaged viscosity of the mantle lithosphere is ~1.5 x 10%° Pa-s
and it is this value that we assign to the crust-like region. Thus,
the volumetric average of the entire lithosphere remains unchanged,
with constant viscosities within the crust and laterally variable ones
within the lithospheric mantle.

At 400 km depth, we transition from using the inverse calibration
scheme of Richards ef al. (2020) to the more traditional approach of
Austermann et al. (2020), which does not involve a calibration. At
this depth, we average the two viscosity inferences in logarithmic
space assuming a reference viscosity of 5 x 10?° Pa-s (or ~20.699
in logarithmic space) for the traditional approach. It is this reference
viscosity that we enforce as the volumetric average of the sublitho-
spheric upper mantle extending from the LAB down to 670 km
depth, similar to Austermann et al. (2021). However, unlike in their
3-D viscosity inference, we impose this condition differently. We
calculate the volumetric average viscosity of the sublithospheric up-
per mantle (~20.914 in logarithmic space) and apply a uniform shift
of —0.215 in log space in order to satisfy this constraint. Finally,
within the lower mantle (i.e. 670-2891 km depth), absolute viscos-
ity is determined assuming a reference viscosity of 5 x 10! Pa-s,
which is also the adopted average viscosity of the lower mantle.
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The resulting 3-D viscosity inference is shown in Fig. S2 and the
entire model may be found in the Supporting Information. Like-
wise, estimates of LAB depth based on the 1175 °C isotherm are
provided and shown in Fig. S3. This separation is done to avoid con-
fusion with the filtered and bounded 3-D viscosity model (Fig. 2)
that is derived from this initial inference and used in the forward
and adjoint GIA simulations. Our treatment of the mantle and crust
as entirely viscoelastic is a departure from traditional GIA models
that invoke an elastic lid (which implies knowledge of the effective
elastic thickness of the lithosphere). Constraining this thickness
remains challenging and its meaning varies across geophysical dis-
ciplines (e.g. Lau er al. 2020). Instead, we believe a more elegant
approach is to avoid defining the elastic thickness and instead allow
the degree of elastic versus viscous deformation to be determined
by material properties interacting with the geometry and timescale
of surface load changes.

As a final step, we construct a comparable 1-D radial viscosity
model based on this 3-D viscosity inference (Fig. S4). This model
consists of a 100-km-thick, high-viscosity (~1.5 x 10?° Pa-s) lid,
a sublithospheric upper mantle (100—670 km depth) viscosity of 5
x 10% Pa-s, and a lower mantle (670-2891 km depth) viscosity of
5 x 102! Pa-s. We use this model in all forward and adjoint GIA
simulations herein that adopt a 1-D viscosity model.

6 RESULTS AND DISCUSSION

6.1 Forward simulations of sea-level change

The total sea-level change from 26 ka to 1950 CE predicted by for-
ward GIA simulations and driven by the filtered ICE6G(VM5a) ice
history model (Section 5) is shown in Fig. 3. This figure includes
results that adopt both the filtered and bounded 3-D viscosity model
(Fig. 2) and its 1-D radial representation (Section 5.1). As expected,
the largest total sea-level change occurs near the former Laurentide
and Fennoscandian ice sheets, in which peak sea-level fall reaches
approximately —800 m over the course of 26 kyr for the 1-D vis-
cosity model (Fig. 3b). In contrast, adoption of our 3-D viscosity
model results in peak sea-level fall of approximately —700 m and
approximately —500 m within the footprint of the Laurentide and
Fennoscandian ice sheets, respectively (Fig. 3a). The difference in
total sea-level change in these two simulations is shown in Fig. 3(c)
and is equivalent to the difference in their final sea level since they
use the same value of initial sea level [obtained from the filtered
ICE6G(VMba) ice history]. Thus, for later clarity, we refer to the
results in Fig. 3(c) as the difference in final sea level.

In the near field, which includes the ice sheets and their forebulge,
we observe higher sea level for the 3-D viscosity model within the
footprint of the former Laurentide and Fennoscandian ice sheets,
as well as within coastal regions of East Antarctica and Greenland
(Fig. 3c). As expected, sea level is generally lower at the peripheries
of these regions within the forebulge. In contrast, we find lower sea
level within West Antarctica and central Greenland, and where a
clear forebulge exists, higher sea level is observed. These differ-
ences in final sea level in part reflect the relative stiffness of our
3-D viscosity structure with respect to its 1-D radial representation.
In our 3-D viscosity model, the Canadian Shield, Fennoscandian
Shield, Greenland and East Antarctic Shield are all underlain by
an overall stiffer mantle, which reflects their thick, cold, in some
cases cratonic lithosphere and their long-term tectonic stability. As
a result of stiffer mantle, these regions experience less solid Earth

deformation in response to ice-mass change. Thus, areas of net ice-
mass loss experience lower uplift and subsidence, leading to higher
sea level within the footprint of the ice sheets and lower sea level
within the forebulge. Within areas of net ice-mass gain (e.g. central
Greenland) deformation is similarly muted, but the direction of de-
formation and by extension sea-level change is opposite. In contrast,
the mantle underlying West Antarctica is weaker in our 3-D viscos-
ity structure relative to its 1-D radial representation, which reflects
the warmer mantle and thinner lithosphere that are characteristic
of tectonically active regions. When these regions experience net
ice mass loss greater solid Earth uplift (i.e. lower sea level) occurs
directly beneath the load change, while greater solid Earth subsi-
dence (i.e. higher sea level) is found at the peripheries. Finally, we
note that a similar pattern is observed in Patagonia and reflects re-
gional ice-mass loss and a weaker mantle, although this feature is
of insufficient amplitude to be visible in Fig. 3(c).

In the far field (i.e. beyond the extent of forebulges), sea level
is generally higher by up to 10 m in the open ocean for the 3-D
viscosity model relative to its 1-D radial representation. As for the
near field, final sea-level differences in the far field arise, in part, due
to the difference in viscous structure and, by extension, lithospheric
thickness between the two viscosity models. However, the strength
of ocean siphoning and expulsion (i.e. sea floor subsidence and
uplift, respectively) in the near field also modulates the far field sea
level. Meanwhile, a more complex pattern with a similar magnitude
is observed along coastal regions and often includes a switch in
polarity across the coastline that reflects variations in the magnitude
of continental levering. A detailed examination of the influence of
3-D structure on continental levering is beyond the scope of this
work and we instead refer the reader to Austermann et al. (2021).

Although much of the difference in final sea level shown in
Fig. 3(c) is due to the viscosity contrast between our 3-D viscosity
model and its 1-D radial representation, a component is also due
to our assumption that the initial sea level is the same for both
simulations. As a result of their different viscoelastic properties,
some regions, particularly marine-based sectors of the ice sheets,
are subject to alternative histories of ocean loading and unloading,
solid Earth deformation, and gravitational changes. Quantifying
this contribution requires determination of an initial sea level for
each individual simulation that will yield a consistent sea-level (i.e.
topography) prediction at the final time step. Thus, we now turn our
attention to recalibration of initial sea level.

6.2 An example of the initial sea-level recalibration

Following the procedure laid out in Section 4, we perform an initial
sea-level recalibration using a synthetic example. We have chosen
to adopt the final sea level predicted by the forward GIA simulation
using the filtered and truncated 3-D viscosity model as the observed
present-day sea level. We then iteratively invert for the initial sea
level that is required to match this ‘observation’ for simulations
that instead use the 1-D viscosity model. We find that this inversion
converges rapidly over the course of 4-5 iterations, during which
the greatest misfit reduction (=90 per cent) occurs in the first it-
eration (Fig. 4a). Neglecting to implement a suitable smoothing
strategy, however, leads the inversion to become easily trapped in
local minima that are related to instabilities in the vicinity of the
former marine ice sheets. For such an inversion without smoothing,
this behaviour results in differences between predicted and observed
final sea level of £25 m to the north of Fennoscandia as well as
410 m in Hudson Bay and the Northwestern Passages of North
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Figure 3. Predicted sea-level change from 26 ka to 1950 CE for different viscosity structures under the assumption of a fixed initial sea level. (a) Results
that adopt the filtered and bounded 3-D viscosity structure (Fig. 2) or (b) the 1-D viscosity structure (Section 5.1). In these two maps blue colours indicate
sea-level rise and green colours indicate sea-level fall. (c) The total sea-level change difference at 1950 CE between models that adopt the 3-D and 1-D viscosity
structures. Here, blue (green) colours indicate greater (lesser) sea level relative to the 1-D simulation results. Finally, the red dashed line shows the location of

the inset map.

America (Fig. 5c). These instabilities dominate the highest degrees
of our spherical harmonic basis functions and likely arise from their
truncation above /,,,x = 64.

In order to avoid these numerical instabilities, as well as to im-
prove the fit of the predicted and observed present-day sea level,
we use the smoothing described in Section 4 within a two stage
inversion procedure. In the first stage, we apply a one-sided Han-
ning taper to the initial sea-level kernel (eq. 5) and set /. equal to
60 (eq. 18). As in the example without smoothing, the inversion
initially converges rapidly and achieves a similar degree of misfit
reduction over 4-5 iterations (Fig. 4a), but now the maximum dif-
ference between the predicted and observed present-day sea level
is reduced to ~1.5 m (Fig. 4b). Fig. 6(c) shows that there remains
some ringing artefacts radiating from points of highly localized dis-
crepancy that have peak amplitudes of ~1 m and are associated with
the truncation of the spherical harmonic transformation. To further
reduce these discrepancies and artefacts, we perform a second stage
of the inversion that includes higher degree information. We now
use the full, unfiltered initial sea-level kernel and, over the course of
another four iterations, the misfit decreases by a further two orders
of magnitude. The maximum difference between the predicted and
observed present-day sea level is 0.38 m and satisfies our conver-
gence criteria (Fig. 6). Although minor ringing artefacts persist, this
second stage of the inversion procedure reduces their maximum am-
plitude to only ~0.05 m. Thus, we now have a new initial sea level
that, when used with our 1-D viscosity model, predicts present-day
sea level that is consistent with that of the original forward GIA
simulation for the filtered and bounded 3-D viscosity model.

Using results from the forward GIA simulation that adopts the 1-
D viscosity model and the recalibrated initial sea level (SL[), we can
now decompose the difference in final sea level for our two original
forward simulations (Fig. 3¢) into a component that is due to the
different viscosity models and another arising from our erroneous
assumption of the same initial sea level (SLY). The contribution of
the former is shown in Fig. 7(b) and is obtained by differencing the
total sea-level change predicted by the forward simulation with 3-D
viscosity (Fig. 3a) from the 1-D case using the recalibrated initial
sea level (Fig. 7a). Within numerical accuracy, this is equivalent
to the difference between the two initial sea levels (SLJ and SLJ).
This difference (Fig. 7b) is more subdued within and near the former
marine ice sheets in comparison to that of simulations using the same
initial sea level (Fig. 3¢). For example, the difference in the total sea-
level change within the marine portion of the former Fennoscandian
ice sheet has decreased from ~200 to ~170 m. This difference, and

others shown in Fig. 7(c), reflect changes in the history of loading
and unloading of the oceans, including their viscoelastic response,
resulting from the use of different initial sea level (SL{ and SL]) and
viscosity models (1-D and 3-D) that predict the same present-day
sea level. The overall pattern of 3-D-minus-1-D sea-level change,
nevertheless, remains similar and our prior discussion in Section 6.1
on the influence of relative changes in viscosity therefore remains
valid.

Through this example, we have demonstrated the success of the
initial sea-level recalibration based on the adjoint method and gradi-
ent based optimization, which can be implemented in more complex
inversions that also updates other model parameters (e.g. mantle vis-
cosity; Lloyd et al. in preparation). Although we focused here on
results obtained using the method of steepest descent, we have also
tested the conjugate gradient method and found that it produces
consistent results (Fig. 4). In all instances, the degree of success
of the inversion relies on a suitable smoothing strategy that assim-
ilates and matches lower spherical harmonic degree structure first
and then systematically introduces higher degree structure in latter
iterations. This approach is similar to that taken in adjoint seismic
tomography (e.g. Pratt 1999; Fichtner ef al. 2009; Zhu et al. 2015),
where progressively shorter period waveforms are assimilated in
later iterations. In our inversion strategy, however, we have chosen
to control the length scale of new information by low-pass filter-
ing the gradient as opposed to filtering the predicted and observed
data (e.g. Pratt 1999; Fichtner et al. 2009; Zhu et al. 2015). Finally,
armed with two suitably calibrated initial sea levels (SL{ and SL}),
we can now explore viscosity sensitivity kernels for sea-level ob-
servations in order to understand how these data will likely inform
inversions for 3-D mantle viscosity.

6.3 Viscosity sensitivity kernels for sea-level observations
adopting a 1-D viscosity model

We begin by examining 3-D viscosity sensitivity kernels that relate
changes in sea-level observations to viscosity perturbation within
the solid Earth adopting a 1-D viscosity model. We recall that these
kernels are calculated following eq. (4) and that they are a lin-
ear approximation of the Fréchet derivative relative to the assumed
viscosity structure, in which the range of their validity has been
explored by Crawford et al. (2018), Tromp & Mitrovica (2000) and
in Appendix C2. We consider two types of sea-level observations
and hence two types of viscosity sensitivity kernels. First, an ab-
solute sea-level point measurement at a given time, #,s, which was
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Figure 4. Evolution of the misfit and convergence of the initial sea-level
recalibration. (a) A plot of misfit versus iteration number showing: (blue
line) the unmodified recalibration procedure where no smoothing is applied
to the gradient; and (black lines) two-stage recalibration procedure where the
gradient is initially smoothed for four iteration (i.e. prior to the red line) using
eq. (18) with /; = 60, beyond which no smoothing is applied to the gradient.
The solid and dashed lines indicate inversions whose search directions are
determined by steepest decent or conjugate gradient, respectively. Finally,
the large blue and black circles indicate iterations shown in Figs 5 and 6,
respectively (b) A plot showing convergence, which is evaluated using the
maximum amplitude of the difference between the observed and predicted
final sea level. The green dashed line indicates the convergence threshold
of 0.5 m and other annotations are similar to panel (a). In this study, we use
the result from the two-stage procedure using steepest descent.

initially discussed by Crawford et al. (2018). Secondly, a relative
sea-level point measurement that dates from a given time, ., but
is defined as the difference in sea level between 7,,s and present day,
t,, and therefore reflects the change in sea level between these two
times. This latter type generally corresponds to observations made
in the field, since elevations of palaeco sea-level indicators are mea-
sured relative to present-day sea level. We note that both absolute
sea level and relative sea level are spatially variable fields. Recall
that calculations of relative sea-level viscosity kernels only require
a change to the adjoint load (Section 3.1) and thus, eq. (4) remains
unchanged. In addition, sensitivity kernels for relative sea-level ob-
servations can also be constructed by differencing those for two
absolute sea-level observations [i.e. Ksi(Xobss Zobs) — KsL(Xobss #p);
Section 3.1].

In order to explore how relative sea-level measurements might
sense Earth’s viscosity structure and how these sensitivities differ
from those of absolute sea-level measurements, we examine the vis-
cosity sensitivity kernels in three settings: (1) in the near field of the
Fennoscandian ice sheet at Andenes, Norway, (2) on the forebulge
of the Laurentide ice sheet at Barbados and (3) in the far field at the
Seychelles. To aid with intercomparison of the kernels, we consider
ages of 10 and 0 ka for the absolute sea-level observations and 10—
0 ka for the relative sea-level observation. For further simplicity, we
adopt our 1-D viscosity model (Section 5.1), its newly determined
initial sea level (SL]), and perform the forward and adjoint GIA
simulations as described in Section 5. Due to rotational symmetry
of the 1-D solid Earth structure, differences in the viscosity kernel
for each site reflects only its location with respect to the evolving
ice sheet and oceans. By not adopting a 3-D viscosity model at this
stage, we ensure that any laterally varying features of the kernel
are related to the induced deviatoric stresses and not their depen-
dence on n~!. Furthermore, although the adjoint method provides
the contribution to the kernel, K, at each individual time step,
yielding insight into the deformational processes that influence the
observation at each point in time, we examine these kernels in their
time-integrated form, K, to obtain a complete picture of the total
sensitivity. From a geophysical imaging perspective, it is this time-
integrated kernel that we relate to an observation or misfit. Thus, we
will focus on building intuition concerning how the dominant phys-
ical processes are encoded within the viscosity sensitivity kernel, as
well as how the definition of the sea-level observation influences the
kernel structure and its dependency on various physical processes.
In turn, this intuition will guide how we invert palaco sea-level
observations for 3-D viscosity structure and how we interpret the
resulting images in our companion study.

Critical to decoding these kernels is the ability to interpret their
meaning. For absolute sea-level observations, positive (negative)
kernel values indicate that an increase in viscosity at that location
within the Earth leads to an increase (decrease) in sea level at the
observation site. For relative sea-level kernels, changes to viscosity
affect both sea level at the time the observation was encoded and
sea level at the present. This factor can lead to the cancellation of
similarly sensed regions and will highlight processes that lead to
differences in the sea-level signal between the time of the sea-level
observation and the present. In terms of the behaviour of relative sea
level, a positive (negative) kernel value indicates that an increase in
viscosity at that location within the Earth will increase (decrease)
relative sea level at the observation site. The link between relative
sea-level kernels and corresponding relative sea-level change is,
however, more obscure since it depends on the size and timing of
the surface load changes (i.e. ice sheet and ocean) relative to #,,s and
1,, and whether sea level has risen or fallen over this time window.
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Figure 5. Unmodified initial sea-level recalibration. (a) The initial sea-level sensitivity kernel for the first iteration. (b) The update applied to the initial sea
level in the first iteration. (c) The difference between the observed (i.e. target) present-day sea level and the prediction after four iterations (N.B., equivalent plot
for the first iteration appears in Fig. 3c). (d) The initial sea-level sensitivity kernel for the fourth iteration. (e) The update applied to the initial sea level in the
fourth iteration. The red dashed line shows the location of the 30°-wide inset maps over Canada and Fennoscandia plotted in lower left and right, respectively.
These maps show the features that ultimately cause the inversion to fail to converge. The corresponding misfit and convergence evolution of this procedure are

shown by the blue line in Fig. 4.

A few characteristics appear to be ubiquitous to the viscosity sen-
sitivity kernels for absolute sea-level and relative sea-level observa-
tions (Figs 8-10). With regards to absolute sea-level observations,
some of these characteristics were originally reported by Crawford
et al. (2018), but are listed here for completeness. First, the ampli-
tude of the viscosity sensitivity kernels for near-field observation
sites are 10—100 times greater than those for far-field observation
sites. Secondly, there is sensitivity throughout all depths of the man-
tle. At shallow depths, peak sensitivities are concentrated beneath
the observation site as well as beneath those regions experiencing
significant surface-load changes due to the evolving ice sheets and
redistribution of the oceans. These regions of sensitivity broaden
with depth, consistent with the results of Paulson ez al. (2005) and
Wu (2006). As we approach the core—mantle boundary, far-field
observation sites often have visible global coverage, while near-
field observation sites have higher amplitude sensitivities that are
spatially restrictive. Nevertheless, the surface integral of the 3-D
sensitivity kernel at a given depth in the deep mantle is typically
small compared to shallower depths, which is consistent with past
studies that determined 1-D radial sensitivity kernels for mantle
viscosity (e.g. Mitrovica & Peltier 1991b; Crawford et al. 2018).
It is only when the corresponding 3-D viscosity sensitivity kernels
are calculated that one realizes the intuition gained from their 1-D
counterparts can be misleading. Instead, 3-D sensitivity kernels for
both absolute sea-level and relative sea-level observations have non-
negligible sensitivities within the deep mantle and possess unique
patterns that reflect the location of the observation site with respect
to the surface load changes. Therefore, there exists great promise
for imaging not just the upper portion of the 3-D viscosity structure,
but also its deepest depths. Third, the existence of positive and neg-
ative regions within the viscosity kernels for both types of sea-level
observations indicates that there is potential to mask the influence

of Earth structure on an observation, which has previously been
noted in forward modelling studies (e.g. Wu & van der Wal 2003).
Although these generalizations are broadly correct, there are some
deviations and finer-scale structures within the kernels whose ori-
gin is not easily discerned. Nevertheless, the structure of the kernels
reflects physical processes that influence the behaviour of sea level
at the observation site, which we will now discuss for three different
settings.

6.3.1 Viscosity sensitivity kernels for Andenes, Norway

In our first example, we consider a sea-level observation site at
Andenes, Norway, where local sea-level has fallen over the last
10 kyr of the simulation. Fig. 8 shows depth slices at 75, 600 and
2400 km through the viscosity sensitivity kernels for absolute sea-
level observations at 10 and 0 ka, as well as for a relative sea-
level observation covering the period 10-0 ka. These kernels are
dominated by high-amplitude features that reflect the nearest re-
gions of ice-mass change. More distant load changes, such as the
shrinking Laurentide ice sheet, generate sensitivities within the un-
derlying mantle that have a similar magnitude to those observed
in kernels for far-field observations at the same location (e.g. Sey-
chelles; Fig. 10). Although these low-amplitude sensitivities are
present within the kernel and may have relevance for imaging, we
will focus on higher amplitude features at each depth and begin
our discussion with the absolute sea-level observations at 10 and
0 ka.

Within the lithosphere, the maximum amplitude of the kernel is
small relative to underlying regions of the sublithospheric mantle
(Figs 8a and d). This reflects the high viscosity of the lithosphere
(~1.5 x 10%° Pa-s), which essentially behaves elastically at the
time-scale of the simulation, and thus has a negligible effect on
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Figure 6. Two-stage initial sea-level recalibration. The panels are similar to Fig. 5, but show results from the two-stage recalibration procedure corresponding
to the solid black line in Fig. 4. In the first four iterations, this inversion applies a low-pass filter to the initial sea-level kernel to exclude information from the
highest spherical harmonic degrees. Thereafter, this filter is removed and the solution satisfies our convergence criterion by iteration seven. Panel (f) shows the
difference between the observed (i.e. target) and predicted present-day sea level following convergence.
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Figure 7. Influence of lateral viscosity variations and initial sea level. (a) The total sea-level change from 26 ka to 1950 CE for a simulation using the 1-D
viscosity structure and recalibrated initial sea level, S Lg. (b) The contribution to the difference in the final sea level from Fig. 3(c) that is solely due to adopting
the filtered and bounded 3-D viscosity model instead of the 1-D model. This field is obtained by differencing the sea-level change in Figs 3(a) and 7(a), and is
equivalent to SLg - SLg. (c) The contribution to the difference in final sea level from Fig. 3(c) that is solely due to use of an incorrect initial sea level. This
latter contribution can adversely affects the use of sea-level observations to image mantle structure.

absolute sea-level observations if its viscosity is perturbed. For the northwest that reach a peak amplitude greater than 1000 x
both absolute sea-level observations (10 and 0 ka) along profile A 1072 m~2 at 300 km depth and persist down to ~550 km. Further
(Fig. S15), there is a general pattern of positive kernel values beneath to the northwest, the kernel again becomes positive, though its

Andenes extending to the southeast and negative kernel values to amplitude is much smaller.
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Figure 8. Comparison of viscosity sensitivity kernels for absolute and relative sea-level observations at Andenes, Norway. (a—c) Slices at 75, 600 and 2400 km
depth through the viscosity sensitivity kernel for an absolute sea-level observation at 10 ka. The inset map is centred on the observation site (cyan circle) and
has a width of 30°. It is extent is shown on the main map as a thick red dashed line. The thin blue dashed line shows the 0 m sea level contour at 10 ka. (d—f)
The same, but for an absolute sea-level observation at 0 ka. The thin red dashed line shows the 0 m sea level contour at 0 ka. (g—i) The same, but for a relative
sea-level observation from 10 ka. Note that the colour scale for each column is chosen to symmetrically span the range of values for the relative sea-level
viscosity sensitivity kernel and thus, regions of high amplitude absolute sea-level sensitivity may be saturated.

Across this region, the structure of the viscosity sensitivity ker-
nels for absolute sea-level observations reflect a number of linked
processes. First, the positive kernel region beneath and to the south-
east, underlying the former Fennoscandian ice sheet, indicates that
an increase to viscosity there will lead to an increase in absolute sea
level at Andenes. This relationship follows from the fact that a stiffer
mantle in this region will lead to slower uplift during deglaciation
and hence higher absolute sea level. Secondly, the negative kernel
region to the northwest indicates an increase in viscosity there will
decrease absolute sea level at Andenes. We suggest that this is be-
cause stiffer viscosities will modify the behaviour of the forebulge,
reducing its amplitude and increasing its width either side of the
hinge point. As a result, the solid Earth at Andenes will become
higher and absolute sea level will decrease. Finally, the transition
back to positive kernel values further to the northwest again indi-
cates that an increase in viscosity here will result in an increase
in absolute sea level at Andenes. We speculate that this is because
a stiffer mantle beneath this region would lead to less subsidence
of the ocean basin, with the formerly accommodated water mass
now redistributed over the global ocean leading to an increase in
absolute sea level at Andenes.

From ~550 to 670 km depth (i.e. the base of the transition zone)
the dominant features within the viscosity sensitivity kernels for
the absolute sea-level observations flip polarity. Here, the kernels

are negative beneath Andenes, while the surrounding area is now
positive (Figs 8b, e and Fig. S15). This negative region of the kernel
indicates that an increase in viscosity there will decrease absolute
sea level at Andenes. At the same time because this region under-
lies the former Fennoscandian ice sheet where greater solid Earth
uplift occurs, we more intuitively expect an increase in viscosity to
decrease solid Earth uplift and hence increase absolute sea level,
similar to what is indicated by the kernels at shallower depth. Thus,
a negative kernel value beneath the ice sheet initially seems puz-
zling. We suggest that this behaviour occurs due to coupling of the
lower viscosity (5 x 10% Pa-s) upper mantle and transition zone
with the higher viscosity (5 x 10*! Pa-s) lower mantle, which is a
consequence of the boundary condition that the change in displace-
ment, u, across a solid-to-solid boundary is 0 (eq. 2.14 of Al-Attar
& Tromp 2013; i.e. a void cannot form;). In part to satisfy this
boundary condition and in order to match deformation at the top of
the higher viscosity lower mantle, vertical uplift above the 670 km
viscosity discontinuity must decrease relative to that predicted for
an earth model with a uniform viscosity of 5 x 10 Pa-s. Increasing
mantle viscosity just above 670 km depth lowers the viscosity con-
trast and shrinks the required reduction in vertical uplift necessary
to satisfy the boundary condition. Negative sensitivities between
~550 and 670 km depth demarcate the region where an increase in
viscosity will allow for greater overall uplift of the solid Earth and
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Figure 9. Comparison of viscosity sensitivity kernels for absolute and relative sea-level observations at Barbados. The panels are the same as Fig. 8 except

that the shallowest depth slice is now at 150 km and the width of inset map is 20°.

hence lower absolute sea level. This interpretation is consistent with
the kernels switching back to positive at and below 670 km depth
(Figs 8c, fand S15), where a decrease in viscosity (i.e. a reduction
of the viscosity contrast) leads to a decrease in absolute sea level
at Andenes. This simple depth-varying structure (i.e. +, —, +) of
the kernel illustrates how the change in absolute sea level at the
observation site due to viscosity perturbation in one region can be
masked by an appropriately sized perturbation in another region. It
is clear that this masking behaviour occurs with other observations
(e.g. relative sea level) and thus, may explain why Wu & van der Wal
(2003) found that relative sea-level observations near the centre of
large load changes may be unable to detect lower mantle viscosity
perturbations if the upper mantle and transition zone is perturbed
in the opposite sense. It is important to note, however, that our sen-
sitivity kernels are calculated for a different 1-D viscosity structure
than Wu & van der Wal (2003) and that a proper comparison would
require consideration of the full 3-D structure of the kernel.

Surrounding the negative region between ~550 and 670 km
depth, the kernel is positive. Although subsidence due to fore-
bulge collapse does occur to the northwest of Andenes, we find
that any vertical deformation associated with this process dissi-
pates by ~325 km depth and, at deeper depths, is characterized by
low-amplitude uplift. Thus, we suggest that positive kernel values
within the broader transition zone reflect the longer wavelength load
change associated with deglaciation of the Fennoscandian ice sheet
rather than forebulge collapse. From this standpoint, an increase in
viscosity in this positive kernel region will reduce solid Earth uplift
and increase absolute sea level.

Finally, at depths of 670 km and greater (Figs 8c, f and S15), the
viscosity sensitivity kernel beneath northern Europe is again posi-
tive, indicating that an increase in viscosity there will increase abso-
lute sea level at Andenes. The amplitude of the kernel is smaller due
to the higher viscosity of the lower mantle (i.e. the n~! dependence
of eq. 4) and greater distance from the surface load change. The
latter is a result of attenuation, which also more strongly dissipates
the higher spherical harmonic degrees of deformation. Thus, defor-
mation in the lower mantle beneath northern Europe is controlled
by the lower spherical harmonic degree components of the shrink-
ing Fennoscandian ice sheet. By increasing the viscosity beneath
northern Europe, the extent of solid Earth uplift due to unloading of
the ice sheet is reduced and hence absolute sea level at Andenes in-
creases. In contrast, the kernels are negative beneath northern North
America. Through similar logic, an increase in viscosity there will
increase absolute sea level above that region, thereby siphoning wa-
ter mass from other parts of the global ocean and, in turn, decreasing
absolute sea level at Andenes.

With these considerations in mind, we next turn our attention to
the viscosity sensitivity kernel for a relative sea-level observation
spanning 10-0 ka (Figs 8g—i) and begin by addressing the rela-
tionship between absolute and relative sea-level change and their
associated sensitivity kernels. We recall that sea level has fallen at
Andenes over the final 10 kyr of the simulation, such that relative sea
level is positive. Directly beneath Andenes at 75 km depth (Fig. 8g),
the kernel is negative, indicating that an increase in viscosity there
will decrease relative sea level at the observation site. To make
sense of this result, we recall that the kernel for a relative sea-level
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Figure 10. Comparison of viscosity sensitivity kernels for absolute and relative sea-level observations at the Seychelles. The panels are the same as Fig. 8
except that the shallowest depth slice is now at 300 km and the width of inset map is 40°.

observation is equivalent to the difference between the kernels for
absolute sea-level observations at 10 and 0 ka. Within this region of
the mantle, both absolute sensitivity kernels are positive, indicating
that an increase in viscosity there will increase absolute sea level at
the observation site. Furthermore, since KsL(t = 10 ka) < KsL(t =
0 ka), the same increase in viscosity will result in a greater increase
in absolute sea level at 0 ka compared to 10 ka. When sea level
has fallen, this behaviour reduces the difference between absolute
sea level at 10 and 0 ka and thereby decreases the 10-0 ka relative
sea-level change, consistent with negative kernel values.

Focusing now on its general structure, we see that the relative sea-
level kernel is similar to those of absolute sea-level observations,
but with flipped polarities (Figs 8g—i). This pattern indicates that, in
most regions, the absolute sea-level observation at 0 ka has greater
sensitivity to mantle viscosity than its equivalent at 10 ka. One
notable exception is observed beneath the northern marine-based
portion of the Fennoscandian ice sheet at 600 km depth (Fig. 8h).
Here, kernels for both types of sea-level observations are negative
and hence the kernel for a sea-level observation at 10 ka has a
greater amplitude. This difference occurs because the ice sheet
disappeared from this region prior to 10 ka (Fig. 1b) and illustrates
that the amplitude of the kernel for absolute sea-level observations
is greater when the time between the same surface-load change and
observation time is smaller. In contrast, immediately southeast of
Andenes, a localized region at 600 km depth does change polarity
in the kernel for relative sea level due to further ice mass loss
occurring after 10 ka (Fig. 1c). These effects demonstrate that the

spatiotemporal history of loading has an important influence on the
structure of both types of kernels.

6.3.2 Viscosity sensitivity kernels for Barbados

In our second example, we consider an observation site at Barba-
dos, which lies at the edge of the forebulge of the Laurentide ice
sheet. Given its proximity to the ice sheet, it seems natural to as-
sume that sea-level observations here are sensitive to many of the
same deformational processes as the site at Andenes. However, the
different location relative to the load changes causes these defor-
mational process and potential perturbations to the 1-D viscosity
structure to influence sea level at Barbados in a different manner.
Fig. 9 shows that sensitivity to mantle viscosity is focused beneath
the observation site and the closest regions of surface load change
(i.e. the Laurentide ice sheet), with minor sensitivity beneath the
Fennoscandian and West Antarctic ice sheets. Although we will
focus on the higher amplitude features, it is worth noting that the
Barbados absolute sea-level observation at 10 ka has little sensitiv-
ity to mantle viscosity beneath the West Antarctic ice sheet relative
to that beneath the Fennoscandian ice sheet at 150 and 600 km depth
(Fig. 9a,b). This is because much of the ice-mass change in West
Antarctica occurs after 10 ka, where as much of the Fennoscandian
ice-mass change occurs prior to 10 ka (Fig. 1). In contrast, for the
Barbados absolute sea-level observation at 0 ka, the kernel ampli-
tude beneath West Antarctica and Fennoscandia is similar (Figs 9d
and e). Thus, this example highlights the complex inter-play of
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distance (e.g. observation site to load change) with the load change
magnitude, timing, and spatial extent in controlling the amplitude of
the sensitivity kernel. As a result of these same factors, we observe
that the peak amplitudes of the sensitivity kernels for Barbados are
an order of magnitude smaller than those of Andenes. This am-
plitude difference will require careful attention in future work that
images mantle viscosity using sea-level data.

Viscosity sensitivity kernels for the two absolute sea-level ob-
servations at 10 and 0 ka are more complex for Barbados than
Andenes and hence more difficult to interpret. Positive kernel val-
ues at 150 and 600 km depth are predominantly observed beneath
the former Laurentide ice sheet and north of Barbados (Figs 9a and
d), indicating that an increase in viscosity there will raise absolute
sea level at Barbados. We speculate that, for areas around the periph-
ery of the former Laurentide ice sheet, a stiffer mantle will lead to
slower forebulge subsidence, which causes absolute sea level to be
higher elsewhere, including Barbados. High positive kernel values
along the transect from Barbados to the Laurentide ice sheet might
indicate that a differently shaped forebulge, due to a stiffer man-
tle, can result in deeper water depths at Barbados. At upper mantle
depths, the kernel is near zero or negative beneath Barbados itself
(Figs 9a and d), indicating that an increase in viscosity will reduce
subsidence of the solid Earth in response to the increased ocean
load from deglaciation. Hence, absolute sea level will be lower if
the upper mantle is stiffer directly beneath Barbados. This inter-
pretation is consistent with Austermann et al. (2013), who showed
that a high-viscosity slab in the Caribbean subduction zone acts to
reduce local sea level.

Finally, at 2400 km depth, deformation is again dominated by
long-wavelength load changes that will be primarily related to the
shrinking Laurentide ice sheet. Here, the sensitivity kernel has a
positive kernel value in the centre of the region between the Lau-
rentide ice sheet and Barbados, which is ringed by negative kernel
values (Figs 9c and f). This feature reflects the relative geographic
location of the load change and the observation site. Although its
full nature is unclear, we note that the boundary from positive to
negative kernel values nearest Barbados corresponds to a change
from uplift to subsidence of the solid Earth at this depth in the
forward simulation.

We next turn our attention to the viscosity sensitivity kernel
for a relative sea-level observation spanning 10—0 ka in Barbados
(Figs 9g—i). In this example, sea level has risen at the observation
site (i.e. relative sea level is negative) between 10 and 0 ka during
the simulation. Directly beneath Barbados at 150 km depth, the
sensitivity kernel for relative sea level is negative, indicating that an
increase in viscosity there will decrease relative sea level (Fig. 9g).
At this same location, the kernels for absolute sea-level observations
are also negative with Kg (# = 10 ka) < Kg; (# = 0 ka). Thus, for the
same viscosity increase, the absolute sea level observation at 10 ka
will decrease more than that at 0 ka, increasing the sea-level offset
spanning 10—-0 ka. Given this behaviour, along with the fact that sea
level is rising, the relative sea level at the observation site will be-
come more negative (i.e. decrease) as viscosity increases, consistent
with negative kernel values for the relative sea-level observation.

At depths of 150, 600 and 2400 km, we find that amplitudes
across the footprint of the former Laurentide ice sheet are more
uniform at a given depth in comparison to the two sensitivity kernels
for absolute sea-level observations. At 150 km depth, there are
stronger changes in polarity at continent—ocean boundaries along
the northeastern United States and northern South America, which
we suggest relate to forebulge collapse and continental levering,
respectively. Meanwhile at 600 km depth, we observe an intriguing

pattern of negative, positive and then negative kernel values in the
vicinity of Barbados, which is roughly orthogonal to the great circle
path connecting Barbados to Hudson Bay. Because Barbados lies
at the edge of the Laurentide forebulge this pattern likely relates to
the dynamics of forebulge collapse (Fig. 9h). At 2400 km depth, we
note that the amplitude of the viscosity sensitivity kernel is only a
factor of two smaller than that observed at 150 km depth (Fig. 91).
As we will see in the next example, this pattern of non-negligible
sensitivity to deep mantle viscosity structure is a ubiquitous feature
of these sensitivity kernels.

6.3.3 Viscosity sensitivity kernels for Seychelles

In our final example, we consider a far-field observation site in
the Seychelles where sea level has risen during the final 10 kyr
of the forward GIA simulation. Fig. 10 shows images of the vis-
cosity sensitivity kernels at depths of 300, 600 and 2400 km for
the two absolute sea-level observations at 10 and 0 ka, as well as
for a relative sea-level observation spanning the period 10-0 ka.
We observe two distinct groups of kernels for observations that
are located at far-field sites. The first is characterized by a sig-
nificant continental region lying between the observation site and
the dominant region of ice mass change, such that there is no ap-
preciable ocean load change within this intermediate region. As a
result, a more diffuse sensitivity pattern develops similar to that
observed in the Seychelles example (Fig. 10). The second group
occurs for observation sites, such as Tahiti, where the intervening
region is predominantly ocean basin. These kernels exhibit an ap-
proximately linear, high-amplitude zone of sensitivity between the
site and locations of ice-mass change (Crawford et al. 2018), which
is reminiscent of banana—doughnut kernels in seismology (Dahlen
et al. 2000). While we have not illustrated an example of this sec-
ond group here, our kernel for Barbados has some similar features
(Fig. 9).

Within the viscosity sensitivity kernel for absolute sea-level mea-
surements at 10 and 0 ka, there are again a number of local features
that reflect a range of deformational processes. First, the negative
kernel value at all depths beneath the Seychelles reflects the fact that,
during deglaciation, the ocean load increases and a stiffer mantle
therefore results in less subsidence and lower absolute sea level, sim-
ilar to Barbados. Furthermore, the negative kernel values beneath
the observation site are observed throughout the mantle, suggesting
that, in contrast to the Andenes example, coupling between the upper
and lower mantle has limited influence on the behaviour of sea level
at this site. We speculate that this aspect occurs because the load
change due to the ocean, though long wavelength, is small in am-
plitude relative to that of the Fennoscandian ice sheet. Meanwhile,
surrounding the Seychelles and beneath the ocean, the sensitivity
kernel is positive at 300 km depth (Figs 10a and d), indicating that
an increase in viscosity there will increase absolute sea level. This
relationship suggests that a stiffer mantle in this region will result
in less subsidence of the solid Earth due to the growing ocean load,
with the corresponding reduction in local ocean capacity raising
absolute sea level at the observation site. Further to the west, we
see a positive-to-negative polarity change at 300 km depth crossing
from offshore to onshore east Africa (Figs 10a and d). This pattern
reflects the influence of continental levering on the behaviour of
sea level at the Seychelles, with an increase in viscosity causing
deformation across the coastline to become lower amplitude and
longer wavelength. We suggest that the Seychelles are sufficiently
close to the east African shoreline to sense this reduction in offshore
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subsidence during deglaciation, raising the solid Earth and reducing
absolute sea level at the observation site.

The upper mantle and transition zone kernels for absolute sea-
level observations at both 10 and 0 ka have similar amplitudes within
the vicinity of the ice sheets, with the highest values occurring
beneath their peripheries. We argue that this sensitivity pattern is
related to ocean siphoning (Mitrovica & Milne 2003), in which a
higher viscosity leads to slower subsidence of the peripheral bulges
and hence higher absolute sea level in the far field. Additionally, the
kernel at 0 ka exhibits a negative anomaly beneath Hudson Bay. This
area is rebounding in response to glacial unloading and, following
the demise of the Laurentide ice sheet, continuing uplift will expel
water from Hudson Bay and cause absolute sea level to rise in the
far field.

Figs 10(g)—(i) also shows the viscosity sensitivity kernel for a
relative sea-level measurement in the Seychelles dating from 10 ka.
Although this kernel does exhibit differences in polarity in some lo-
cations, the more intriguing feature is its loss of sensitivity through-
out some regions of the mantle. For example, at 300 km depth, there
is a reduction in regional sensitivity to viscosity and the observa-
tion is restricted to sensing local viscosity structure predominantly
beneath the observation site and in the vicinity of the east African
coastline. This behaviour occurs because the evolution of the local
ocean load leads to similar sensitivities for absolute sea-level ob-
servations at 10 and 0 ka, except for a slight westward (i.e. inland)
shift of the coastline due to shoreline migration. Thus, it is near this
region that visible sensitivities are focused, indicating that relative
sea level in the Seychelles from 10 ka is more sensitive to shoreline
migration than continental levering. Similarly at 300 and 600 km
depth, there is a reduction in the spatial extent of sensitivities at
the peripheries of the ice sheets. We conclude from this pattern
that the relative sea-level measurement is less sensitive to forebulge
deformation and associated ocean siphoning than its constituent ab-
solute sea-level observations. Through these two examples, we have
demonstrated that absolute and relative sea-level observations from
the same location and time period can have quite distinct sensitivi-
ties to the viscosity structure of the mantle and thus, record distinct
deformational processes.

To finish, we return to a striking characteristic of the viscosity
sensitivity kernels for both types of far-field sea-level observations,
which is that similar amplitude sensitivities are found beneath both
the region of the observation site and the regions of ice mass change,
even when the two are antipodal. This simple observation has two
profound consequences for the use of far-field relative sea-level
data to constrain mantle viscosity and, by extension, ice history.
First, for a laterally heterogeneous Earth, their use will lead to an
estimate that blends local and distal viscosity structure. Such biases
in 1-D estimates of mantle viscosity have been demonstrated in
forward analyses (e.g. Lau et al. 2018), but the sensitivity kernels
in Fig. 10 quantitatively illustrate the reasons for this behaviour.
From the perspective of a local relative sea-level dataset, one cannot
simply disentangle the influence of the local viscosity structure,
which controls the relative local distribution of the ocean load,
from the viscosity structure beneath the changing ice sheet and
forebulge regions, which dominates the change in total water mass
accommodated in the observation region. Furthermore, from the
perspective of a global far-field relative sea-level dataset, this bias
is exacerbated by the fact that the mantle underlying regions of
ice-mass change is sampled by every observation, while the local
mantle structure in the far field may only be sampled by a handful
of observations. An important consequence is that 1-D estimates
of mantle viscosity are likely biased towards the viscosity structure
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underlying regions of significant load change, such as beneath the
Laurentide and Fennoscandian ice sheets.

Secondly, the sensitivity kernels in Fig. 10 hint at a means to
minimize sensitivity to distal mantle structure, while preserving
sensitivity to local structure. We can envision this idea by imag-
ining that a second observation site exists on the northern coast
of Madagascar. While its kernel will locally appear quite differ-
ent, distal regions will be similar and thus, by differencing kernels
(i.e. differencing the relative sea-level measurements), sensitivity is
minimized to distal mantle structure whilst being locally enhanced.
This thought experiment demonstrates the potential power of differ-
ential relative sea-level measurements for constraining local mantle
rheology (e.g. Nakada & Lambeck 1989).

6.4 Viscosity sensitivity kernels for relative sea-level
observations adopting a 3-D viscosity model

Now that we have gained some insight into the nature of viscosity
sensitivity kernels for absolute and relative sea-level observations
on a 1-D radial Earth, we turn our attention to exploring the effects
of lateral variability in viscosity, which will begin to reveal the non-
linear nature of the viscosity Fréchet derivatives. Importantly, these
results represent the first time that global 3-D viscosity sensitivity
kernels for absolute and relative sea-level observations have been
robustly calculated for a 3-D viscosity model, following in the
footsteps of recent kernels for the rate of change of the degree 2
zonal harmonic of Earth’s geopotential (J,; Kim et al. 2022).

Through two examples, we investigate the influence of geody-
namic features including hotspots, slabs and variable lithospheric
thickness, which are likely to be characterized by variations in vis-
cosity structure. Although these sources of viscosity heterogeneity
influence the sensitivity kernels for both types of sea-level observa-
tions (e.g. Figs 11-12 and S7-S18), we focus on those for relative
sea-level observations since they form the foundation of the palaco
sea-level record and will be used to invert for 3-D mantle structure
in our companion study (Lloyd et al. in preparation). Despite using
a long-wavelength inference of Earth’s 3-D viscous structure, the
kernels for both types of sea-level observations represent a more
realistic quantification of observational sensitivity to viscosity com-
pared to those based on a 1-D radial viscosity model (Section 6.3
and Crawford et al. 2018).

In our first example, we consider a relative sea-level observation
from the Amundsen Sea Embayment of Antarctica that dates to
2.2 ka (Johnson et al. 2008). In this region, seismically slow mantle
wave speeds (Lloyd et al. 2020) and rapid uplift rates recorded by
continuous GNSS stations installed on bedrock suggest the pres-
ence of a low viscosity (~10'® Pa-s) upper mantle and transition
zone (Barletta ef al. 2018). To first order, this feature is present in
our filtered and bounded 3-D viscosity inference (Fig. 2), although
it lacks the lowest of viscosities and finer scale structure that has
been imaged by regional seismic tomography models (e.g. Lloyd
et al. 2015, 2020; Lucas et al. 2020). Nevertheless, it still demon-
strates the dramatic influence that even this modest degree of lateral
viscosity heterogeneity can have on the structure of the viscosity
sensitivity kernel (Fig. 11).

Inclusion of lateral viscosity variability causes a dramatic in-
crease in the amplitude of the sensitivity kernel at shallow depths
(e.g. 75 km) from £0.01 x 1072 to +180 x 1072 m~2, which
reflects an increase in viscous deformation at this depth due to a
weaker regional viscosity structure. In addition, we find that ker-
nels based on the 3-D viscosity model are characterized by spatially
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Figure 11. Relative sea-level viscosity sensitivity kernels for 1-D and 3-D viscosity structure. Slices at 75 and 150 km depth through the viscosity sensitivity
kernels for a relative sea-level observation on an unnamed island in the Amundsen Sea Embayment (cyan circle) dating to 2.2 ka (Johnson et al. 2008). The first
column shows the sensitivity kernel obtained when assuming our 1-D viscosity model (Section 5.1 and Fig. S4) and the second column shows the sensitivity
kernel obtained when assuming our filtered and bounded 3-D viscosity inference (Fig. 2). It is this 3-D viscosity structure that is shown in the third column
and regions where the amplitude of the sensitivity kernel is less than 1072 m~2 are shaded in grey. The inset map is centred on the North Pole and has a width

of 90°.

restricted, more focused features that exhibit greater complexity
with depth. This pattern reflects the length scale of deformation
present within the simulation and is controlled by the interaction
between the viscosity structure and the distribution and magnitude
of the surface-load changes. Furthermore, the nearly pure elastic
response of the thick East Antarctic lithosphere strongly zeros out
the sensitivity to viscosity within this region (see Fig. 11 at 150 km
depth).

In our second example, we consider a hypothetical relative sea-
level observation from Barbados that dates to 10 ka. Barbados rep-
resents another end member of the plate tectonic regime, as it lies
along the Caribbean subduction zone where cold, high-viscosity
oceanic lithosphere is subducted into the mantle. The presence of
this slab has previously been argued to suppress local viscous de-
formation and to reduce sea-level change due to local ocean loading
(Austermann et al. 2013). Although our filtered and truncated 3-
D viscosity model does not have the resolution to fully capture
the downgoing South American plate (Fig. 2), sufficient structure

is present to capture its likely effects on the viscosity sensitivity
kernel.

In Fig. 12, we see that introduction of 3-D structure beneath Bar-
bados results in negligible sensitivity at 75 km depth within high-
viscosity regions and indicates that, for these load changes and at
these timescales, elastic deformation dominates within this region
of the mantle. In contrast, weaker viscosity regions that are located
further from the observation site exhibit notably higher sensitivity
because they undergo greater viscous deformation. For example,
portions of the mid-Atlantic ridge have positive kernel values, indi-
cating that an increase in viscosity there would lead to an increase
in relative sea-level at Barbados as mantle material cannot escape
as efficiently along the mid-ocean ridge axis. This behaviour of dis-
tal viscous deformation more strongly influencing relative sea level
at Barbados than local viscous deformation is consistent with the
ocean loading model for the Caribbean subduction zone proposed
by Austermann et al. (2013). In their model, they suggest that ocean
loading at Barbados produces less viscous deformation because of
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Figure 12. Relative sea-level viscosity sensitivity kernels for 1-D and 3-D viscosity structure. The panels are similar to Fig. 11, but for a relative sea-level
observation located at Barbados dating to 10 ka. Here, we show slices at 75 and 1200 km depth with an inset map centred on Barbados that has a width of 20°.

the high viscosity of the subducting South American Plate, while
adjacent regions underlain by weaker viscosities undergo greater
viscous deformation. At greater depths (e.g. 1200 km), we observe
significant and complex changes to the structure of the viscosity sen-
sitivity kernel for 1-D versus 3-D viscosity models. For example, we
observe a switch from negative to positive kernel values beneath the
eastern coast of North America, which may be related to presence
of the Farallon slab. Although the origin of these changes is not
always obvious, they demonstrate the importance of 3-D viscosity
structure in modulating which regions of the Earth an observation
is sensitive to.

Finally, it is worth noting that many regions of the mantle are
not characterized by strong viscosity heterogeneity, but rather small
perturbations about the mean mantle viscosity (Figs 2 and S2).
These regions generally exhibit more limited changes in first-order
structure of the viscosity kernel (e.g. 300 km depth; Fig. S18), even
in cases where stronger viscosity heterogeneity exists at nearby
depths (e.g. 150 km depth; Fig. S18), although there are important
exceptions to this general rule.

7 CONCLUSIONS

In part one of our efforts to lay out a robust framework for imaging
3-D mantle viscosity using palaeo sea-level observations, we have
reviewed the conceptual description of Fréchet derivatives and how
to calculate them for viscosity and initial sea level in the GIA prob-
lem. Furthermore, a review of the rate formulation of the forward
and adjoint GIA problem as derived by Al-Attar & Tromp (2013)
and Crawford et al. (2018) is provided in Appendix A. We have
extended this work to calculate sensitivity kernels for observations
of relative sea level and, in the process, have demonstrated that their
adjoint loads are composed of equal but opposite sea-level adjoint
loads at t.s and #,. Moreover, we have shown that these kernels
can also be determined by differencing the sensitivity kernels for

absolute sea-level observations at 7., and ,. Although we focus
on viscosity sensitivity kernels, the approach can also be used to
calculate sensitivity kernels for other model parameters, such as the
rate of change in ice thickness.

We have also presented an extension to the numerical implemen-
tation of the forward and adjoint GIA problem that allows for the
inclusion of 3-D viscosity, which is a fundamental requirement for
3-D imaging. In order to apply this extension sensibly, a new in-
ference of 3-D mantle viscosity based on the shear-wave speed of
GLAD-M25 (Bozdag et al. 2016; Lei et al. 2020) has been produced
by roughly following the approach of Austermann et al. (2021).
Care has been taken during its construction to allow the entire man-
tle and crust to be viscoelastic. Through this choice, we naturally
include lateral variations in lithospheric viscosity and thickness,
thereby permitting characteristics of the surface load changes to de-
termine the extent of elastic versus viscous deformation. This new
3-D viscosity inference is included within the Supporting Informa-
tion.

We have demonstrated how to use the adjoint method to de-
termine the initial sea level of the simulation, such that for any
combination of Earth structure, rheology, and ice history, forward
GIA simulations accurately arrive at the observed present-day to-
pography. In order to minimize numerical artefacts due to trunca-
tion of the underlying spherical harmonic basis functions, we have
shown the importance of a two-step inversion strategy that initially
focuses on fitting long-wavelength observations before adding in
shorter wavelength features. This same strategy can be effective in
avoiding local minima and has been successfully used in seismic
tomography based on the adjoint method (e.g. Pratt 1999; Fichtner
et al. 2009; Zhu et al. 2015). Although a similar iterative approach
to this problem is routine (e.g. Kendall et al. 2005), our procedure
permits simultaneous inversion for initial sea level and other model
parameters (e.g. mantle viscosity, ice thickness changes).

Using a 1-D Earth structure, we have provided and discussed
the characteristics of viscosity sensitivity kernels for both absolute
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and relative sea-level observations that are located in near-field,
forebulge and far-field settings. Through these examples, we gain
intuition concerning how physical processes are encoded within
the structure of the kernel. For example, we have explored how
the geometry of solid Earth rebound and forebulge collapse influ-
ences sea level. We have observed how sea-level observations are
influenced by continental levering, by ocean siphoning and expul-
sion, as well as by coupling of weaker viscosity upper mantle with
stiffer viscosity lower mantle. We acknowledge that identification
of these processes can be challenging, but doing so provides deeper
insight into the behaviour of sea level at a particular location and
can improve the design of forward modeling experiments.

Although there are many differences amongst the viscosity sen-
sitivity kernels for observations of absolute sea level and relative
sea level, there are four general characteristics that are worth reit-
erating. First, kernels for near-field observations have amplitudes
that are ~10-100 times greater than those that are located on the
forebulge or within the far field. Secondly, the sensitivities for near-
field observations are dominated by the closest regions of surface
mass change. In contrast, kernels for far-field observations have
similar amplitude sensitivities both locally and beneath regions of
major surface mass change (e.g. Laurentide ice sheet). This last
point conveniently demonstrates why estimates of 1-D mantle vis-
cosity based on far-field observations may be biased. Third, far-field
viscosity sensitivity kernels fall into two groups that can be differen-
tiated based on whether the region intermediate to the observation
site and ice-mass change is dominantly continental or oceanic in
nature. For the former, the structure of the kernel is more diffuse,
while in the latter, a linear and higher amplitude zone of sensitivity
develops that is reminiscent of banana—doughnut kernels in seis-
mology (Dahlen et al. 2000). Finally, observations of absolute sea
level and relative sea level are uniquely sensitive to viscosity in the
deep mantle and the amplitude of their 3-D sensitivity kernels are
non-negligible, in contrast to what has previously been suggested
by 1-D sensitivity kernels (e.g. Mitrovica & Peltier 1991b; Lau et al.
2016).

Finally, for the first time, we have presented global 3-D viscosity
sensitivity kernels for both absolute and relative sea-level observa-
tions that are calculated for a 3-D viscosity model. In general terms,
inclusion of 3-D viscosity structure leads to greater complexity of
the kernels. Using examples from the Amundsen Sea Embayment
and Barbados, we have demonstrated that including lower viscosity
regions introduces higher amplitude and shorter wavelength struc-
ture into the kernel. In high-viscosity regions, the inverse is true
and there is a threshold above which elastic deformation dominates
and the viscosity sensitivity kernel tends to zero. This latter effect
leads to the greatest sensitivities being concentrated in a lower vis-
cosity region that can be quite distal to the observation site. These
examples begin to reveal the non-linear behaviour of the viscosity
Fréchet derivatives and hence, indicate the highly non-linear nature
of an inversion for 3-D mantle viscosity. It is this inversion that we
will focus on in a companion study (Lloyd et al. in preparation),
where we will use the tools and intuition developed herein to de-
velop strategies for inverting synthetic palaeo sea-level observations
in order to image a target 3-D mantle viscosity model.

SUPPORTING INFORMATION

Supplementary data are available at GJI online.
Figure S1. Voigt average shear-wave speeds from GLAD-M25.
Depth slices through the Voigt average shear-wave speed anomalies

of GLAD-M25 (Bozdag ef al. 2016; Lei et al. 2020). Wave speed
anomalies are plotted 1-D radial average of GLAD-M25.

Figure S2. Inferred viscosity structure based on GLAD-M25.
Depth slices of the 3-D viscosity model inferred from the shear-
wave speeds structure of GLAD-M25 (Fig. S1; Bozdag et al. 2016;
Lei et al. 2020). Viscosity anomalies are relative to the 1-D radial
viscosity model discussed in Section 5.1 and shown in Fig. S4.

Figure S3. Depth to the 1175 °C isotherm. Map showing the
depth to the 1175 °C isotherm in the intermediate temperature in-
ference based on the shear-wave speeds of GLAD-M25 (Bozdag et al.
2016; Lei et al. 2020). The 3-D temperature inference is provided
in the Supporting Information.

Figure S4. Distribution of the inferred 3-D viscosity structure
and a comparison with our 1-D viscosity model. Plot of our 1-D
radial viscosity model (cyan line), which from the surface to the
core-mantle boundary has viscosities of ~1.8 x 10%°, 5 x 10%°
and 5 x 10%! Pa-s with discontinuities at 100 and 670 km depth.
In the background is a globally normalized 2-D density heatmap of
the inferred 3-D viscosity structure (Fig. S2). When computing the
normalized density for each spherical shell, each viscosity element
is weighted by the sin of its colatitude in order to account for the
change in element density along each line of latitude. In addition,
the cyan dotted line indicates the minimum and maximum of the
3-D viscosity model as a function of depth.

Figure S5. Comparison of viscosity sensitivity kernels for sea-
level and relative sea-level observations in the Amundsen Sea Em-
bayment for a 1-D viscosity structure. Slices at 75, 150 and 300 km
depth through the viscosity sensitivity kernels for (top row) a sea-
level observation at 10 ka, (middle row) a sea-level observation at
0 ka, and (bottom row) a relative sea-level measurement at 10 ka.
The inset map, centred on the observation site (cyan circle), has a
width of 30° and it is extent is shown by the red dashed line the
main map. The colour scale for each column is chosen to symmet-
rically span the full range of relative sea-level viscosity sensitivity
kernel and thus, regions of the sea-level sensitivity kernels may be
saturated.

Figure S6. Comparison of viscosity sensitivity kernels for sea-
level and relative sea-level observations in the Amundsen Sea Em-
bayment for a 1-D viscosity structure. Panels are the same as Fig. S5,
but for slices at 600, 1200 and 2400 km depth.

Figure S7. Comparison of viscosity sensitivity kernels for sea-
level and relative sea-level observations in the Amundsen Sea Em-
bayment for a 3-D viscosity structure. Panels are the same as Fig. S5,
but now we have used our filtered and bounded 3-D viscosity infer-
ence (Fig. 2).

Figure S8. Comparison of viscosity sensitivity kernels for sea-
level and relative sea-level observations in the Amundsen Sea Em-
bayment for a 3-D viscosity structure. Panels are the same as Fig. S7,
but for slices at 600, 1200 and 2400 km depth.

Figure S9. Comparison of viscosity sensitivity kernels for sea-
level and relative sea-level observations at Barbados for a 1-D
viscosity structure. Panels are the same as Fig. S5, but now the
observation site is at Barbados and the width of inset map is 20°.

Figure S10. Comparison of viscosity sensitivity kernels for sea-
level and relative sea-level observations at Barbados for a 1-D vis-
cosity structure. Panels are the same as Fig. S9, but for slices at 600,
1200 and 2400 km depth.

Figure S11. Comparison of viscosity sensitivity kernels for sea-
level and relative sea-level observations at Barbados for a 3-D vis-
cosity structure. Panels are the same as Fig. S5, but now we have
used our filtered and bounded 3-D viscosity inference (Fig. 2) and
the width of inset map is 20°.
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Figure S12. Comparison of viscosity sensitivity kernels for sea-
level and relative sea-level observations at Barbados for a 3-D vis-
cosity structure. Panels are the same as Fig. S11, but for slices at
600, 1200 and 2400 km depth.

Figure S13. Comparison of viscosity sensitivity kernels for sea-
level and relative sea-level observations at Andenes,Norway for a
1-D viscosity structure. Panels are the same as Fig. S5, but now the
observation site is at Andenes, Norway and the width of inset map
is 30°.

Figure S14. Comparison of viscosity sensitivity kernels for sea-
level and relative sea-level observations at Andenes, Norway for a
1-D viscosity structure. Panels are the same as Fig. S13, but for
slices at 600, 1200 and 2400 km depth.

Figure S15. Profile A—A’ Comparison of viscosity sensitivity
kernels for sea-level and relative sea-level observations at Andenes,
Norway for a 1-D viscosity structure. A radial slice along profile
A-A’ through the viscosity sensitivity kernels for (a) an absolute
sea-level observation at 10 ka,() an absolute sea-level observation
at 0 ka and (c) a relative sea-level measurement at 10 ka. The
location of this profile is shown on the bottom centre map, which
is centred on the observations site (cyan circle). In the radial cross-
sections the black dashed line shows the 670 km discontinuity.
Above this discontinuity the values of the kernel correspond to
the colour scale in the lower-left corner. Those values in the lower
mantle are coloured using the colour scale in the lower-right corner.
The colour scales are chosen to symmetrically span the full range of
relative sea-level viscosity sensitivity kernel in these two regions and
thus, regions of the sea-level sensitivity kernels may be saturated.

Figure S16. Comparison of viscosity sensitivity kernels for sea-
level and relative sea-level observations at Andenes, Norway for a
3-D viscosity structure. Panels are the same as Fig. S5, but now we
have used our filtered and bounded 3-D viscosity inference (Fig. 2)
and the width of inset map is 30°.

Figure S17. Comparison of viscosity sensitivity kernels for sea-
level and relative sea-level observations at Andenes, Norway for a
3-D viscosity structure. Panels are the same as Fig. S16, but for
slices at 600, 1200 and 2400 km depth.

Figure S18. Relative sea-level viscosity sensitivity kernels for
1-D and 3-D viscosity structure. Slices at 150 and 300 km depth
through the viscosity sensitivity kernels for a relative sea-level ob-
servation on at Andenes, Norway (cyan circle) dating to 10 ka. The
first column shows the sensitivity kernel obtained when assuming
our 1-D viscosity model (Section 5.1 and Fig. S4) and the second
column shows the sensitivity kernel obtained when assuming our
filtered and bounded 3-D viscosity inference (Fig. 2). It is this 3-D
viscosity structure that is shown in the third column and regions
where the amplitude of the sensitivity kernel are less than 0.1 per
cent of the maximum amplitude of the kernel are shaded in grey.
The inset map is centred on Andenes and has a width of 30°.

Please note: Oxford University Press is not responsible for the
content or functionality of any supporting materials supplied by
the authors. Any queries (other than missing material) should be
directed to the corresponding author for the paper.
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APPENDIX A: REVIEW OF THE RATE FORMULATION OF THE FORWARD AND

ADJOINT GIA PROBLEM

A1 The forward GIA problem

The approach taken here to solve the GIA problem differs from methods that rely on iteratively solving the sea level equation (e.g. Mitrovica
& Milne 2003; Kendall et al. 2005). Instead, Al-Attar & Tromp (2013) and Crawford et al. (2018) derive coupled evolution equations that
embody the same physics as the sea-level equation, but can be solved numerically with an explicit time-stepping scheme and are ideally suited
for the adjoint method. Consistent with other solutions of the GIA problem, the solid Earth is assumed to undergo quasi-static deformation,
to be self-gravitating, and to be initially at rest and in hydrostatic equilibrium. Previously, it has been assumed to be spherical, isotropic,
compressible and composed of an elastic inner core, an inviscid fluid outer core, a viscoelastic mantle, and an elastic lithosphere. In our
simulations, however, we allow the mantle and crust to deform viscoelastically and allow the lithosphere to be defined by the extent of
high-viscosity regions and the characteristics of the load changes (Section 4). In addition, we assume that deformation in viscoelastic regions
is governed by a Maxwell rheology and neglect bulk viscosity, which are both common assumptions in GIA studies (Whitehouse 2018),
although it is worth noting that transient linear and non-linear rheologies can also be implemented within our strategy (as discussed in
Crawford et al. 2016).

Crawford et al. (2018) extended the work of Al-Attar & Tromp (2013) to include gravitationally self-consistent sea-level change with
shoreline migration. This extension is achieved by assuming that the oceans and ice sheets are sufficiently thin such that they can be represented
as surface loads. Strictly speaking, the inclusion of ice sheets, non-global oceans and continents violates the model’s initial condition of
hydrostatic equilibrium. Nevertheless, the expected departure from a hydrostatic pre-stessed field due to realistic lateral heterogeneity will
be small, and so additional terms associated with the deviatoric pre-stress are neglected (Dahlen & Tromp 1999). It is also assumed that the
oceans remain in hydrostatic equilibrium and are interconnected, thus requiring their surface to lie along the same gravitational equipotential.
Under the assumption that water mass is conserved between the oceans and ice sheets, the rate of sea-level change is

. 1
SL=——
g
where dots are used to denote time derivatives and the variables are defined in Table Al. The reduced weak form of the forward GIA problem
with gravitationally self-consistent sea-level change and shoreline migration is
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Within this equation, m is an internal variable used to simulate a Maxwell rheology, with the evolution of this term governed by
1

m+ —(m-—d)=0. (A3)
T

Here, the internal variable m contains the memory of past deformation, in which the duration of this memory is controlled by the Maxwell
relaxation time, t, and is by extension related to viscosity, 1. The derivation of these equations can be found in Al-Attar & Tromp (2013) and
Crawford et al. (2018). We now focus on a few key aspects of eqs (A1) and (A2).
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First, and foremost, eqs (A1) and (A2) are a non-iterative formulation for gravitationally self-consistent sea-level change with shoreline
migration. The non-linearity of shoreline migration, due to the interplay of ocean height and solid Earth deformation, is captured through
dependence of the ocean function, C, on the ocean height, SL and the ice thickness, /. Note that this rate formulation does not yet include
rotation, which is the subject of ongoing work. It is our expectation that rotation will have a minor and long-wavelength effect on the viscosity
sensitivity kernels because it is composed primarily of a spherical harmonic degree-two and order-one signal (e.g. Han & Wahr 1989; Milne
& Mitrovica 1998). In addition, rotation is not required to develop an adjoint-based recalibration scheme for initial sea level nor is it required
to initially explore inversion strategies for imaging 3-D mantle viscosity (Lloyd ef al. in prepration).

Eq. (A2) forms the core of the forward GIA problem and consists of the elasto-gravitational terms within A(a, ¢|u’, ¢"), the surface-load
changes due to the ice sheets and ocean are manifested within the second and fourth integral terms, and the viscous response of the system
within the third integral term. As written, all terms containing the unknown deformation field components, {1'1, qb}, are on the left-hand side
and the right-hand side contains the integral terms that are readily calculated or known. Since these terms are linear with respect to @ and
@, eq. (A2) has the schematic form Ax = b, which means that the time derivatives of the deformation fields can be obtained by solving a
set of linear equations. Finally, time derivatives of sea level and the infernal variables can be directly calculated from their stated evolution
equations and, in this manner, the whole system can be time-stepped.

A2 The adjoint GIA problem

Analagous to the previous subsection, we do not review the full derivation of adjoint GIA equations presented in Crawford ez al. (2018), but
rather go over the essential ideas behind their derivation in a schematic manner. We then state the form of the adjoint equations and briefly
discuss their structure, as well as explaining how the relevant sensitivity kernels are derived.

Let the vector, U, denote the state of the physical system and a vector, P, the underlying model parameters. The state vector U is defined
over an interval ¢ € [t, t;], while P may also have an explicit time dependence. We suppose that the forward problem governing the physics
is posed as an initial-value problem

U—-g(U,P)=F =0, Ut =U, (A4)

where g is a given function of U and P, while F describes the forcing of the system. This equation is assumed to have a unique solution, U,
for any appropriate value of P.

We also consider a scalar-valued objective function, F(U, P), which could be an observation (e.g. sea level at a specific location and
time) or the misfit between predictions and observations. The explicit dependence of F on the model vector P would, in practice, be due
to regularization terms within the misfit, which might seek to dampen or smooth the solution. By solving the forward problem, the state of
the system U becomes an implicit function of the model parameters P, the initial state U, and the system forcing F and can be written as
U=0U (P, Uy, F). The corresponding value of F then depends on P and U alone and, to illustrate this fact, we define the reduced functional

FP.U)=F [&(P, Uo. F). P]. (AS)

Our goal is to differentiate the function, F , with respect to the model parameters, P and initial conditions, U,. This procedure is equivalent
to differentiating F(U, P) with respect to P, subject to the constraint that U satisfies the stated initial value problem. To achieve this task, we
apply the method of Lagrange multipliers and so introduce the Lagrangian

LW, U, P, Uy, Uy =FU, P)— /” (U —gU, PY=F, U dt = (Ut) — Uy, U}). (A6)

fo

Here, (-, -) denotes an appropriate inner product for state vectors, U’ is a time-dependent Langrange multiplier associated with the differential
equation for U, and U] is a time-independent Lagrange multiplier linked to the initial conditions. The Lagrange multiplier theorem states that
DpF(P,Uy) = DpL(U, U, P, U, Up), (A7)
Dy, F(P, Uy) = Dy, L(U, U', P, U, Uy),

DrE(P,Uy) = DrL(U, U', P, U, Up),

subject to the following conditions holding:

Dy L(U, U, P, Uy, Uy) =0, Dy L(U, U,P,Uy,Uy) =0, DyLWU,U,P,Uy, U =0. (A8)

The first two conditions, stating that L is stationary with respect to the Lagrange multipliers, simply require that the state vector solves the
given initial value problem. The final condition, however, gives rise to new equations that must be satisfied by the Lagrange multipliers. To
demonstrate this aspect, we note that for any variation 3 U to the state vector, we must have

/ ' (U, H)dr+ / ' (U, U+ [Dyg(U, P)I'U') dt +(8U(ty), U'(to) + Up)) — (8U(t1), U'()) =0, (A9)

fo fo

where the first term involving H' arises through variation of F with respect to U. Note that, to isolate §U within the second integral, an
integration by parts has been performed and the definition of the adjoint (indicated by the superscript *) of a linear operator has been applied.
In order for this relationship to hold for arbitrary U, we see that U’ must satisfy the following differential equation

U+ [Dug(U, P)I'U' +H' =0, (A10)
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subject to the terminal condition U'(#;) = 0, while we also have U; = U'(t).
As it is more usual to work with initial value problems, a new variable U’ can be introduced through

Ul=r1U, (ALT)
where we have introduced a time reversal operator by
(TUYt) = U(t; —t + 1p). (A12)

Here, we note that the terminal condition on U’ at ¢; is mapped to an initial condition on U' at #y. Having made this definition, we see that Ut
satisfies the differential equation

— T [Dyg(U, P TU +H =0, (A13)

where equivalently H' = TH’. Closer examination of eq. (A13) reveals that time is reversed only for [Dyg(U, P)]* relative to other terms,
which all share a superscript . In other words, the first appearance of T reverses the direction of time, while the second appearance returns
the flow of time to its original direction. Similarly, the initial condition is transformed to U'(T,) = 0 and we also see that U'(#;) = Uj. It is
conventional to call U' the adjoint state vector and the above equations the adjoint problem, which are driven by the fictitious adjoint forcing,
1. Finally, we note that the structure of the adjoint problem (eq. A13) is very similar to that of the forward problem (eq. A4) and, in such
instances, solutions for U' can often be obtained using the same numerical scheme as the forward problem.

Calculation of the derivative of £ with respect to P and/or U requires us to solve: (1) the forward problem for the state vector U and (2)
the closely related adjoint problem for the adjoint state U', with this latter problem depending on the state vector both through the adjoint
force, H', and, for non- llnear forward problems, through the linear operator Dyg(U, P). Having solved these problems, we can use eq. (A7)
to obtain the derivative of £ with respect to P, Uy or F. For example, the first-order change in F due to a perturbation 8P to the model
parameters, §Uj to the initial conditions, and §F to the system forcing, is given by

t t
§EF = (DpF(U, P), §P) + / ([Dpg(U, PYI'TU', 5P) dt + (U'(t1), 8Uy). + / (U, sF) dt (A14)
to to
Here, the first term on the right-hand side typically arises due to regularization and the second term contains the interaction of the forward
and adjoint simulations. It is notable that the choice of objective function, F, enters into the adjoint problem only through the adjoint forcing
1. This aspect means that minimal changes are required to apply the theory to new types of measurements or misfit functions.

Following on from this mathematical schematic, the appropriate Lagrangian for the GIA problem (eq. 78 of Crawford et al. 2018) is given

by

L=F-pg f [SL(ty) — SLo]SL'(15)dS + pig / () — Io] ') dS
oM oM
+ /tl A(u, g, ¢') — / 210 [m cm’ + 1(d —m):(d — m’)] dv — pwg/ SLSL'dS
1 Mg g

) |:u vq>+¢—%f C(u- v<1>+¢)ds][gSL +C - VO +¢)HdS — pig /(1—1)1 ds
M

/ (1-C)l. [ VO + ¢ — Z/W[gSLHLC(u/.ve1>+¢’)]ds] ds dt, (A15)

where again, descriptions of the variables can be found in Table Al. Here, the second term on the right-hand side imposes the prescribed
initial sea level, SLy, the third term imposes the prescribed ice thickness, /, and the remainder is the time integrated weak form of the forward
GIA problem. Although all time-dependent variables are evaluated at time ¢, when working with the Lagrangian, we will find it useful to
introduce the adjoint state variables (eqs A11 and A12). In order to more easily recognize their time reversal, we define the adjoint time, ¢/ =
t — t + t, in which the subscripts 0 and 1 are the initial and final time of the forward simulation, respectively.

Crawford et al. (2018) derived the adjoint equations for the GIA problem using the third condition of eq. (A8) and the introduction of the
adjoint state variables (eqs A1l and A12). The resulting adjoint equations are solved for unknowns (SL, uf, ¢1), which are comparable to
those in the forward equations (eqs Al and A2), and take the form

. hl, CT | . .
spt= st = [nf VO + ¢ — —L/ [gSLT+ Cl"- VO + ¢1)] ds] , (A16)
Puw& g AT Joum
and
. 7 / i pw . y 1 ro. . , ,
Al ¢’ ¢') — —/ [u* VO + ¢l — —_/ cia'- v<b+¢>f)ds] Clu' - Vo + ¢')dS
g Jam A Jom
2 . .
:/ K0 @ — ) : d’dV—|—/ (hj,-u’+h;-¢>’) s
Mg T
1 . 1 .
- f/ i, [u' VO +¢ — —/ Cclau - Vd>+¢’)dS] ds, (A17)
8 Jom At Jom
respectively. The adjoint internal variable satisfies
P ,
m' + - (m'—d') =0, (A18)
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which is much like the internal variable in the forward problem (eq. A3).

A description of these variables is provided in Table Al, but we note that A{ are the adjoint loads, which are equivalent to H! in the
mathematical schematic. In this work, only hg , 1s non-zero because we consider only measurements directly related to sea level and not,
for example, those for solid-Earth displacements or gravity in isolation. In eq. (A17), the adjoint sea-level load, h'é . » interacts with the test
functions u’ and ¢’, giving rise to two adjoint loads that act on the solid Earth and the gravitational field. Finally, we have similarly written
eq. (A17) such that the unknown components of the deformation field, {l'ﬁ, (‘PT}, are on the left-hand side and the right-hand side contains the
integral terms that are readily calculated or known.

Although the right-hand side of the reduced weak form of the forward and adjoint equations (eqs A2 and A17, respectively) are different,
both are of the form Ax = b. Thus, solutions for the adjoint deformation field rate, {1‘17, dﬂ}, can be obtained using the same numerical
scheme (Appendix B), but the elements of b will be different. In so doing, we can readily calculate the adjoint deviatoric stress, similar to
the forward problem. Obtaining the adjoint sea level is, however, more challenging because eq. (A16) is potentially singular and so cannot be
easily integrated. Crawford ef al. (2018) presents a method for integrating this equation that circumvents these singularities by introducing
auxiliary variables.

As we have shown in the schematic example, by solving the forward equations (eqs A1 and A2) and adjoint equations (eqs A16 and A17),
we can use their results to calculate the desired derivative of £ with respect to P (i.e. sensitivity kernel). In order to obtain the form of this
derivative, we must perturb the Lagrangian with respect to the desired model parameter. In this study, we require expressions for the sensitivity
kernels for initial sea level, SL,, and viscosity, n. Thus, by varying the Lagrangian in eq. (A15) with respect to SL, and by introducing the
adjoint state variables (eqs A1l and A12), we find

<DSL0F, 5SL0> - / Ks1,8SLo dS. (A19)
oM

where we have defined the sensitivity kernel for initial sea level to be
Ksi, = pugSLYt]). (A20)

Note that this sensitivity kernel depends only on the adjoint sea level at the final time, tf , of the adjoint simulation.
Likewise, we obtain the viscosity sensitivity kernel by recalling that t = n/u, for a Newtonian fluid and differentiating eq. (A15) with
respect to 7 to find

(D,]F,Sn> = [0 [y A tisIngdvds (A21)

where 7 = 2u1(d — m) is the deviatoric stress, ' is the corresponding adjoint field and § Inn = ‘37” is a viscosity perturbation. The sensitivity
kernel for a viscosity perturbation is therefore

5] l

Kiny = / —r:tlde (A22)
1 2n

We see that K, , depends on the interaction between the forward and adjoint deviatoric stresses for the full duration of the simulation. Finally,

we note that both sensitivity kernel equations (eqs A20 and A22) are equivalent to those determined by Al-Attar & Tromp (2013) and

Crawford et al. (2018).

APPENDIX B: NUMERICAL IMPLEMENTATION FOR 1-D RADIAL VISCOSITY
MODELS

A detailed description of the numerical implementation of the forward and adjoint GIA equations can be found in the Appendix of Crawford
et al. (2018), but for completeness, we briefly review how eqs (A2) and (A17) are solved at an arbitrary instant in time when adopting a 1-D
radial viscosity model. In this scenario, we numerically solve eqs (A2) and (A17) by representing scalar, vector, and tensor fields within and on
the solid Earth using generalized spherical harmonics to capture their angular dependence (Gelfand & Shapiro 1956; Burridge 1969), while
their depth dependence is described by a 1-D radial mesh of spectral-elements that each consist of five Gauss—Lobatto—Legendre interpolation
points. Using these basis functions, eqs (A2) and (A17) both decouple into spheriodal and toroidal subsystems, in which the latter are not
excited by radial surface loads for a laterally homogeneous Earth. Unlike in the viscoelastic loading problem of Al-Attar & Tromp (2013),
however, the two spherical harmonic components (radial and consoidal) and the gravitational perturbation do not decouple for each spherical
harmonic degree-/ and order-m. This behaviour occurs because the ocean load (i.e. the second integral term on the left-hand side of eqs A2
and A17) depends on the entire i and ¢ fields. Therefore, instead of solving the simple form

Alilm = blms (Bl)
for each I/, we must solve the more complex form
Al’.‘lm + glm(x) = blma (B2)

which requires an iterative solution (see appendix b of Crawford ef al. 2018). Note that the matrix A; and the vectors X, g, and b, are
defined identically to those of eq. (14). We assume that the solution for the deformation field, {l'l, ¢}, has converged when the difference in
subsequent solutions is less than 1.0% of the difference between the final and initial solution. For completeness, recall that the sea-level rate,
SL, is obtained directly from eq. (A1) and the adjoint sea-level rate, SL', is obtained from eq. (A16) following a change of variables, which
is described in Crawford et al. (2018). This setup just leaves the matter of time-stepping the forward and adjoint GIA simulations.
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Table Al. Variables used in the forward and adjoint formalism.

Variable Meaning Variable Meaning

Mathematical symbols, superscripts, subscripts

S Time derivative \% Gradient

! Test function sl Adjoint variable

Dot product : Contraction
Mg Union of the solid regions 14 Volume integral
oM Surface ds Surface integral
Time parameters

t Forward time f Adjoint time (£ = #; — 1 + 19)
to Initial time (e.g. 26 ka) H Final time (e.g. 0 ka)

Ice-sheet parameters

I Ice thickness Pi Density of ice
Iy Initial ice thickness 1. Current ice thickness

Sea-level parameters

SL Sea level Pw Density of water
C Ocean mask A Area of Ocean
SLy Initial sea level

Solid-Earth parameters

u Displacement ] Gravitational potential perturbation
D Gravitational potential of the reference model g Magnitude of gravitational acceleration
o Unrelaxed shear modulus A Bilinear form associated with
elasto-gravitational forces
n Viscosity T Maxwell relaxation time
m Internal memory variable d Deviatoric strain tensor
T Deviatoric Stress
Select adjoint parameters

hst e Adjoint loads: Ky sL, Sensitivity kernel:

sea level, displacement, gravitation viscosity, initial sea level

perturbation

Inspection of egs (A1), (A2), (A16) and (A17) reveals that the deformation field {1'1, d)}, and sea-level rate, S, depend only on the current
state of the system. Thus, an explicit time-stepping scheme is straightforward to implement and we, as in Al-Attar & Tromp (2013) and
Crawford et al. (2018), use the second order Runge—Kutta method (Press ef al. 1986) and set the time step to be approximately half of the
minimum Maxwell relaxation time, T, which is a suitable choice for an explicit method (Bailey 2006). The inclusion of low viscosity regions
(~10" Pa-s; e.g. Whitehouse et al. 2019; Russo et al. 2022; and Fig. S2) in these simulations, however, requires a time step much smaller
than a year and gives rise to challenges both in terms of run-time and memory usage. Thus, it is clear that explicit time-stepping schemes are
not ideal for simulations spanning tens of thousands of years or more and future improvements to our numerical implementation might be
obtained through the use of implicit time-stepping schemes.

APPENDIX C: VISCOSITY SENSITIVITY KERNELS FOR GIA

C1 Approaches to computing Fréchet derivatives for GIA

Until recently, efforts to determine Fréchet derivatives (i.e. sensitivity kernels) for GIA observations relied on the finite difference method
to approximate this derivative. This approach requires discretizing the solid Earth (i.e. the mantle) into n cells or voxels, whose viscosity

structure can be written as a vector (Inny, . . ., Inn,), where we use log-viscosities for convenience. As discussed in Section 2.1, we can define
a scalar-valued functional, F, based on the solution of the forward problem. The value of F depends implicitly on the viscosity parameters,
and so F'= F(Inny, ..., Inn,). We can also form derivatives of F' with respect to each of the parameters, such that the ith component of this
discretized gradient is
aF
. (ChH
dlnn;
The value of this partial derivative can be approximated using the finite-difference formula
oF F(nny,...,Inp; +éInn,...,Inn,)— F(nn;,...,Inn;,...,Inn,
(nr. ... Ing,) ~ (Inn, ni +38Iny 1a) — F(Inn, n ) )

dlnn; 8lnn
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where Sln 7 is a sufficiently small perturbation (i.e. step size) to the ith viscosity parameter for this first-order expression to be accurate.
In this manner, the discretized gradient can be obtained from n + 1 forward calculations: one for the unperturbed model and » additional
calculations where each model parameter is perturbed in turn.

In practice, the finite-difference approximation has been implemented for GIA in a variety of ways ranging from individual normal modes
(Mitrovica & Peltier 1991a, b) to directly observable surface observations (e.g. Mitrovica & Peltier 1993, 1995; Milne et al. 2004; Paulson
et al. 2005; Wu 2006). In these studies, 7 is chosen with computational limitations in mind and hence perturbations to the model parameters
are generally applied over a voxel that is larger than the discretization of the mesh on which the simulation is performed. This necessity limits
the resolution of the Fréchet derivative because the sensitivity of an observation to parameters within a subregion of the perturbed voxel
cannot be isolated (Wu 2006). Furthermore, the amplitude of the model perturbation is also important, as it must be sufficiently small that the
finite-difference method yields a robust approximation of the desired derivative, but not too small that numerical instabilities dominate the
result. These two details (i.e. voxel size and perturbation amplitude) are therefore important considerations when using the finite difference
method. By way of comparison, since the adjoint method does not require defining a voxel size or a viscosity perturbation amplitude, it
negates these potential limitations and thus, the kernel’s accuracy and resolution is simply limited by the mesh resolution of the forward and
adjoint GIA simulation.

Early efforts to compute viscosity Fréchet derivatives for GIA observations were methodologically limited to 1-D radial kernels that
describe the influence of viscosity purely as a function of depth. The first complete kernel was calculated by Mitrovica & Peltier (1991b), who
built on the work of Peltier & Andrews (1976) by providing the formalism relating viscosity to both the decay times and modal amplitudes.
This approach, however, does not include the the ocean load and therefore avoids solving the sea-level equation. To circumvent this limitation,
Mitrovica & Peltier (1993) devised a fully numerical approach using a finite difference approximation of the Fréchet derivative that has
since been applied to compute 1-D viscosity kernels for observations of gravitational change (Mitrovica & Peltier 1993), relative sea level
(Mitrovica & Peltier 1995) and three-component solid Earth deformation (Milne ez al. 2004). In these latter studies, kernels were constructed
by perturbing viscosity by ~—0.587 in log space (i.e. €' = 0.1; Mitrovica & Peltier 1993) within either 22 or 32 radial layers spanning the
mantle. Mitrovica & Peltier (1995) also showed that the linear approximation of the Fréchet derivatives appears to be accurate when using
viscosity perturbation within a factor of 10 of the reference model, which is consistent with later results obtained from the adjoint method
(Crawford et al. 2018 and Appendix C2).

The transition from 1-D viscosity Fréchet derivatives that have purely radial sensitivity to 3-D kernels, which also express an observation’s
sensitivity to lateral changes in viscosity, began with the work of Paulson ez a/. (2005) and ushered in a period of subtle differences in definitions
within the literature that can lead to some confusion. In their study, Paulson e al. (2005) present the first images illuminating which regions of
the mantle influence the vertical solid Earth deformation at a given location, X" between #, and #,. Although their implementation is identical
to the finite-difference approach, the quantity computed, €, for each individual mantle voxel, m; € M, is different and is given by

S (X 1) = ua (X, 1)l de
S lui(x', )] de

Here, u,(?) is the solid Earth uplift rate at time ¢ for an isoviscous reference viscosity model and u, is the uplift rate at the same time for a
viscosity model that has been perturbed within that discrete mantle voxel, m,. Although successful in delineating a sensitivity region, the
quantity computed is not, strictly speaking, the Fréchet derivative. Full 3-D Fréchet derivatives, preserving both their amplitude and polarity,
were later presented by Wu (2006) for observations of relative sea level, rate of solid Earth deformation and gravitational change at discrete
points in space and time. In that work and subsequent regional studies focusing on the Fennoscandian ice sheet (Steffen ef al. 2007; Steffen &
Wu 2014), sensitivity kernels relative to a 1-D reference viscosity model were constructed using a finite difference approximation, such that

ép

S Sm AV
Here, p is the difference in the predicted observation for the perturbed versus unperturbed simulation, 8m is the model perturbation and AV
is the voxel volume, which serves to balance variations in voxel size. In the GIA literature, the terms in the denominator of eq. (C4) are often
non-dimensionalized, so that the kernel units are consistent with those of the observation. Furthermore, by comparison to eq. (C2), we see
that 8p is equivalent to F(Inn,,...,Inn; +8lnn, ..., Inn,) — F(nny,...,Inn;, ..., Inn,) and ém is equivalent to §In n. The global analysis
of Wu (2006) used a longitudinally symmetric ice sheet and Earth system, in which the latter is composed of 36 mantle voxels distributed
as 4 layers with depth and 9 regions in colatitude. This configuration results in relatively coarse kernels that average over much of the detail
found in our study and discussed in Sections 6.3 and 6.4, hindering direct comparison of sensitivities. Meanwhile, voxels in regional studies
are naturally smaller but lack global coverage throughout the mantle (Steffen et al. 2007; Steffen & Wu 2014). In the studies of Wu (2006) and
Steften et al. (2007), the viscosity within these voxels was perturbed by a factor of ~0.332 in log space. In Steffen & Wu (2014), however,
the magnitude of each viscosity perturbation was set by the local difference between the 1-D reference viscosity model (UIL1_V1; Steffen
et al. 2006) and a 3-D viscosity inference of seismic tomography (U3L1_V1; Steffen e al. 2006). Notably, this choice results in some voxels
being perturbed by >3 orders of magnitude relative to 4 x 10% Pa-s in the uppermost mantle. Such viscosity perturbations are quite large
and may therefore lead to inaccuracy of the linear approximation of the Fréchet derivative in those voxels. While this issue does not detract
from the goals of Steffen & Wu (2014), it leads to errors when using the Fréchet derivative to predict the change in a functional with respect
to a perturbation of the viscosity structure (Appendix C2).

The studies of Wu et al. (2010) and others (Steffen ez al. 2012; Steffen & Wu 2014; Li et al. 2018) use a different definition of sensitivity
that results in 2-D maps. These maps are calculated for a particular time by differencing the predicted observations from two forward GIA
simulations that adopt a 1-D reference viscosity model and 3-D viscosity inference. This definition is inconsistent with our study and the
work described above because the resulting map: (1) is not for a single observation, but rather all surface locations combined and (2) is a 2-D
field defined at the surface of the Earth as oppose to a 3-D field defined within the mantle. Most importantly, these sensitivities are not true

e(m;) = (C3)

(€4

m
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Fréchet derivatives and are in fact equivalent to our Fig. 3(c), which shows the total sea-level change difference between simulations adopting
a 3-D and 1-D viscosity structure.

C2 Comparison of finite difference and adjoint methods

Here we compare the value and predictive accuracy of the viscosity Fréchet derivative for a single mantle voxel obtained from the finite
difference and adjoint methods. To do so, we must relate the discrete derivative of eq. (C2) to its continuous counterpart. We recall from
Section 2.1 that

5F = / KinydInndV, (C3)
M

where §F is the first-order change in F due to the viscosity perturbation, §In 7 and K, , is the viscosity Fréchet derivative. The two approaches
can be linked by differentiating with respect to In n;, yielding

oF dIn
- / Ky gy, (C6)
dln ni M dln ni
For our chosen parametrization, the partial derivative : l';‘: is equal to one within the ith voxel and zero elsewhere. We note that this formula

is equally applicable to other model parametrizations, such as splines. Importantly, eq. (C6) indicates that the partial derivatives of F’ with
respect to a given discretization can be obtained by performing suitable integrals of the continuous Fréchet derivative.

We proceed by considering a relative sea-level observation covering the period 10-0 ka from the Seychelles and a single voxel spanning
the global sublithospheric upper mantle (100-600 km depth). We note, however, that any arbitrary voxel could have been chosen and that
our selection was made for simplicity. In this example, the forward and adjoint GIA simulation setups are identical to those of Section 5 and
they adopt our 1-D radial viscosity model [Litho (0-100 km): ~1.5 x 10% Pa-s; UM (100-670 km): 5 x 10% Pa-s; LM (6702891 km): 5 x
102! Pa-s]. The resulting sensitivity kernel (Figs 10g—i) along with eq. (C6) is used to determine the change in relative sea level with respect
to the viscosity perturbation of the voxel, 285L In the case of the finite difference approach, we perform additional forward simulations for

> dlnn;
a range of potential viscosity perturbations (§lnn; € [10~%, 10?]) that are applied to the global sublithospheric upper mantle voxel. These

results are used to estimate the partial derivative, g}lens r]L , based on eq. (C4). Here, 6p = 6RSL has units of meters, Sm = §Inn; = 8 s unitless,

I
and AVis 2.569 x 10?° m?, such that the partial derivative has units of m~2 and is consistent with the partial derivative obtained using the

adjoint method. Finally, using the partial derivative, gfnsrf , obtained from the adjoint method and a subset of those estimated using the finite
difference approach, we predict the change in relative sea level across the same range of viscosity perturbations by evaluating
dRSL
SRSL = Slnn;. (C7)
d1nn;

Fig. C1 summarizes our findings for the relative sea-level observation from the Seychelles and highlights two key points. First, we see that
predictions of the change in relative sea level from the adjoint method (black line) agree well with simulation results (blue pluses) when the
viscosity model is modified by a perturbation of up to 0 in log space. Beyond this threshold, the quality of the prediction rapidly worsens,
confirming the non-linear dependence of relative sea level on the underlying viscosity structure. Similar predictability limits for absolute sea
level are found by Crawford ef al. (2018) and have been reported for other GIA observables (Mitrovica & Peltier 1993, 1995). This example
also begins to demonstrate how if the viscosity perturbation is too small [i.e. log (§ln ;) = —4] numerical instabilities may dominate the
result.

Secondly, Fig. C1(b) demonstrates how the amplitude of the viscosity perturbation influences the estimated partial derivative for the same
sublithospheric upper mantle voxel and, by extension, the associated predictions for the change in relative sea level (red dashed lines). We
observe that for viscosity perturbations greater than 1 in log space, the finite difference estimate of the partial derivative becomes increasingly
poor, as does the predicted change in relative sea level. This result underlines the importance of choosing a reasonable viscosity perturbation
and illustrates the potential pitfalls of adopting overly large values, consistent with the findings of Mitrovica & Peltier (1993) and others (e.g.
Wu 2006; Steffen et al. 2007). Finally, the non-linearity indicated by these results are consistent with those of Section 6.4 that also demonstrate
how weak and stiff viscosity regions can significantly alter the amplitude and structure of the sensitivity kernels at regional scales.
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Seychelles: Influence of Viscosity Perturbations on Relative Sea Level
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Figure C1. Comparison of the finite difference and adjoint approaches to calculating Fréchet derivatives. Results show the magnitude of the relative sea-level
change as a function of viscosity perturbation for an observation covering the period 10-0 ka from the Seychelles. (a) The solid black line is determined by
eqs (C6) and (C7) along with the sensitivity kernel, Kj, , obtained from the adjoint method (Figs 10g—i). The slope of this line is the partial derivative, %,
obtained from eq. (C6) and corresponds to the global sublithospheric upper mantle voxel. The plus symbols show the change in relative sea level obtained
from a forward GIA simulation that adopts the corresponding perturbed viscosity model. (b) The right-hand panel is the same, but with the addition of three
red dashed lines determined using the finite difference method (eq. C4) for viscosity perturbations of 0.1, 10 and 100 (left to right). The vertical dotted lines
show the viscosity perturbation adopted by various other studies that have used the finite difference method to calculate Fréchet derivatives (Mitrovica & Peltier
1993; Wu 2006; Steffen et al. 2007).
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